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OUTPUT FEEDBACK H∞ CONTROL OF NETWORKED
CONTROL SYSTEMS BASED ON TWO CHANNEL
EVENT-TRIGGERED MECHANISMS

Yanjun Shen, Zhenguo Li, and Gang Yu

In this paper, we study dynamical output feedback H∞ control for networked control systems
(NCSs) based on two channel event-triggered mechanisms, which are proposed on both sides
of the sensor and the controller. The output feedback H∞ controller is constructed by taking
random network-induced delays into consideration without data buffer units. The controlled
plant and the output feedback controller are updated immediately by the sampled input and the
sampled output, respectively. By using the approaches of time delay and interval decomposition,
linear matrix inequality (LMI) based sufficient conditions are presented to guarantee that the
closed-loop system satisfies H∞ performance. Finally, we provide numerical simulations to
illustrate effectiveness of the proposed method.
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1. INTRODUCTION

A networked control system (NCS) is a type of system, which mainly includes sensor
nodes, controller units, actuator units and a controlled plant. With the development
of computer technology, network communication and control technology, NCS has been
applied in various fields, such as aviation, power system, transportation, factory au-
tomation [4, 9, 15, 19, 32, 33]. It has also received widespread attention because of low
installation and maintenance costs, easy reconfiguration, high reliability, small wiring
volume and high system flexibility. However, the involvement of network (especially
wireless network) may bring some problems, for example, transmission delay, packet
loss, quantization [20, 21, 28, 35]. In order to solve these issues, the conventional pe-
riodic sampling (time-triggered) mechanism has been widely used [8, 12, 22, 25, 29].
In time-triggered mechanism, all sampled data will be transmitted through the net-
work, which may waste the communication bandwidth and communication resources.
Therefore, it is necessary to find a new method to solve this problem.

Recently, event-triggered mechanisms that can determine whether the sampled signals
are transmitted or not have received extensive attention [3, 5, 6, 7, 13, 14, 16, 18,
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23, 24, 26, 27, 30, 31]. In comparison to the traditional periodic sampling method,
the network communication burden and the computing resources can be reduced. For
instance, in [26], the authors studied event-triggered H∞ control for NCS with network-
induced delay via state feedback. A co-design method of event-triggered mechanism and
controller feedback gain was proposed for NCS with network-induced delay and packet
loss [5]. In the above literatures, most of the authors proposed controller design by state
feedback under the event-triggered mechanism, and less mentioned controller design by
output feedback. In [24], a dynamical output feedback controller design method was
proposed for NCS based on an event-triggered scheme. The authors in [30] presented a
discrete event-triggered mechanism and investigated dynamical output feedback control
for NCS. The dynamical output feedback H∞ controller was proposed for NCS with non-
uniform sampling periods and an event-triggered communication scheme [3]. In [18], the
authors considered the difference in transmission delays of two transmission channels.
An interval decomposition method was proposed to ensure that the output feedback
controller and the controlled plant were updated at the same time interval.

In conclusion, the event-triggered mechanism is designed on the sensor-to-controller
(S-C) side, which may reduce the network resources on the S-C side. However, due to
limitation of the network resources and bandwidth of the controller-to-actuator(C-A)
side, design of dual-side event-triggered mechanisms have been proposed by researches.
For instance, the authors studied stability and L∞ performance of the closed-loop sys-
tem based on a dynamical output feedback controller with decentralized event-triggered
mechanism [7]. In [16], the problem of output feedback control was proposed for sampled-
data systems with event detectors. However, transmission delays were not considered
both in [7] and [16]. The authors in [13] introduced a novel hybrid event-triggered scheme
for NCS with networked delay. In order to facilitate analysis, they put the total trans-
mission delay on the actuator side. In [27], two-channel event-triggered transmission
strategies were proposed for NCS with communication delay via state feedback and a
novel delay system model was constructed. In [14], the authors studied dual-side event-
triggered output feedback H∞ control for NCS with network delays. However, for the
convenience of analysis, the authors only considered the case with a fixed transmission
delay.

In this paper, we study output feedback H∞ control for NCSs with two channel event-
triggered schemes. As shown in Figure 1, the event-triggered NCS contains a plant, two
samplers, two sensors, a dynamical output feedback controller, two zero-order holds
(ZOHs), an actuator and two event generators. The sensor and sampler in the S-C (or
C-A) channel are used to measure and sample the output of the plant (or the dynamical
output controller), respectively. We assume that the sensor and the sampler are clock-
driven, and the dynamical output feedback controller and the actuator are event-driven.
The samplers in both channels work at a fixed period h. In the S-C channel, all sampled
data will be transmitted from the event generator 1 to the dynamical output feedback
controller via a network with transmission delays. In the C-A channel, all sampled data
will be sent from the event generator 2 to the actuator in the same way. The dynamical
output feedback control and the plant are updated immediately by the sampled output
in the S-C channel and the sampled input in the C-A channel, respectively. Our major
contributions include:
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Fig. 1. The structure of NCS with two channel event-triggered

communication schemes.

1. Output feedbackH∞ control is addressed for NCS with dual-channel event-triggered
mechanisms with random transmission delay. We remove the data buffer units and
process the transmitted data whenever they arrive.

2. The approaches of time delay and interval decomposition are introduced to derive
the closed-loop system. LMI-based sufficient conditions are presented to guarantee
H∞ performance of the closed-loop system.

This paper is organized as follows. In Section 2, we present some preliminaries and
problem description. In Section 3, we give our main results: output feedback H∞ control
design with two side event-triggered schemes. Numerical simulations are provided to
illustrate the validity of the proposed design methods in Section 4. This paper concludes
in Section 5.

2. PRELIMINARIES AND PROBLEM DESCRIPTION

In this paper, we consider a class of linear time-invariant systems given by ẋ(t) = Ax(t) +Bu(t) +Bωω(t),
z(t) = C1x(t),
y(t) = C2x(t),

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, z(t) ∈ Rp, y(t) ∈ Rr and ω(t) are the state vector,
the control input, the control output, the measured output and the disturbance input,
respectively. A,B,Bω, C1, C2 are known matrices with appropriate dimensions, and
x(t0) = x0 is the initial condition.

For the system (1), we make the following assumptions:

1. The system output is sampled at a fixed period h. S1 = {kh | k ∈ N} represents
the set of sampled instants.
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2. In the S-C channel, the set of transmission instants is described by S2 = {rkh | k ∈
N}. S3 = {tkh | k ∈ N} indicates released instants by the event generator 2 in the
C-A channel. The logic ZOH before the output feedback controller (or actuator)
will keep the input of the output feedback controller (or actuator ) unchanged until
the next updated data on the S-C (or C-A) side arrive.

3. τk and dk are transmission delays from the sensor to the dynamical output feed-
back controller and from the dynamical output feedback controller to the plant,
respectively. We assume that the upper bounds of τk and dk are τ̄ and d̄, respec-
tively, and there exist two positive real numbers n1 and n2 such that τ̄ ≤ n1h and
d̄ ≤ n2h.

Next, we propose two event-triggered schemes in the S-C channel and in C-A chan-
nel. As in [26], the event-triggered mechanism before the output feedback controller is
designed as

[y(rkh+ lh)− y(rkh)]TΩ1[y(rkh+ lh)− y(rkh)] ≤ σ1y(rkh+ lh)TΩ1y(rkh+ lh), (2)

where Ω1 is a symmetric positive definite matrix, σ1 is a given scalar parameter, y(rkh+
lh) (l = 1, 2, . . .) represents the value of the measurement output y(t) at the current
sampling instant, and y(rkh) represents the value of the measurement output y(t) at
the latest triggering instant. The event-triggered mechanism (2) decides whether the
current sampled output y(rkh + lh) is transmitted or not. The sampled output data
will be sent to the first ZOH via the network when the event-triggered mechanism (2) is
violated; otherwise, the sampled output date will be discarded immediately. From the
event-triggered mechanism (2), we know that the next release time is rk+1h, where

rk+1h = rkh+ min
l
{lh|[y(rkh+ lh)− y(rkh)]

T
Ω1 [y(rkh+ lh)− y(rkh)]

≥ σ1y(rkh+ lh)TΩ1y(rkh+ lh)}. (3)

The other event-triggered mechanism before the actuator is expressed as

ek
T (t)Ω2ek(t) ≤ σ2x̂(tkh+ jh)TΩ2x̂(tkh+ jh), (4)

where ek(t) = x̂(tkh) − x̂(tkh + jh), Ω2 is a symmetric positive definite matrix, σ2 is
a given scalar parameter, u(tkh) = Kx̂(tkh) and u(tkh + jh) = Kx̂(tkh + jh) (j =
1, 2, . . .) are the latest transmitted control signal and controller output data at the
current sampling time, respectively (K is the control gain and will be determined later).
The sampled control data will not be sent to the plant via the network when the event-
triggered mechanism (4) is satisfied, which means that it will be discarded immediately.
From the event-triggered mechanism (4), we know that the next release time is tk+1h,
where

tk+1h = tkh+ min
j
{jh|ekT (t)Ω2ek(t) ≥ σ2x̂(tkh+ jh)TΩ2x̂(tkh+ jh)}. (5)

Remark 2.1. The event-triggered mechanism (2) at the sensor side decides whether the
plant output data are transmitted or not, and the event-triggered mechanism (4) at the
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controller side decides whether the output data are transmitted or not. Thus the data
transmission of the event-triggered mechanism (2) and the event-triggered mechanism (4)
do not affect each other, which means that the event-triggered mechanisms on both
channels can be triggered simultaneously, but not necessarily synchronously.

Remark 2.2. In [14], for the convenience of analysis, the author defined the maximum
transmission delay of the dual-side transmission channels as τ , and only considered the
case with a fixed time delay. In this paper, we take into account stochastic transmission
delays of the sensor side and the actuator side, and remove the data buffer units. That
is, the dynamical output feedback controller and the controlled system are updated by
the sampled output and the sampled input, respectively, once they arrive.

According to the control strategy shown in Figure 1, we design the following dynam-
ical output feedback controller,{

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(rkh)− C2x̂(rkh)),
u(t) = Kx̂(rkh), t ∈ [rkh+ τk, rk+1h+ τk+1), k ≥ 0,

(6)

where x̂(t) ∈ Rn is the state of the controller, K ∈ Rm×p denotes the control gain and
L ∈ Rm×m indicates the observer gain. The controlled system is given by

ẋ(t) = Ax(t) +BKx̂(tkh) +Bωω(t), t ∈ [tkh+ dk, tk+1h+ dk+1). (7)

Since τk and dk are different, the event generators are sampled simultaneously at a
fixed period. Then the output feedback controller (6) and the system (7) are updated
at different time intervals. As in [30], we use the updated interval of (6) to decompose
the updated interval of (7) to obtain a closed-loop system. Assume that there exist two
positive integers q1 and q2 such that

tkh+ dk ∈ [rq1h+ τq1 , rq1+1h+ τq1+1), tk+1h+ dk+1 ∈ [rq2h+ τq2 , rq2+1h+ τq2+1).

By interval decomposition, we can get

[tkh+ dk, tk+1h+ dk+1) = Φq = Φ0,q ∪
rq

2
−rq

1
−1

s=1 Φs
q ∪ Φ1,q. (8)

where

q =


rq1 , t ∈ [tkh+ dk, rq1+1h+ τq1+1),
rq1+s, t ∈ [rq1+sh+ τq1+s, rq1+s+1h+ τq1+s+1),
s = 1, 2, . . . , rq

2
− rq

1
− 1,

rq2 , t ∈ [rq2h+ τq2 , tk+1h+ dk+1),

(9)

and

Φq =


Φ0,q = [tkh+ dk, rq1+1h+ τq1+1), q = rq1 ,
Φqs = [rq1+sh+ τq1+s, rq1+s+1h+ τq1+s+1), q = rq1+s,
s = 1, 2, · · · , rq2 − rq1 − 1,
Φ1,q = [rq2h+ τq2 , tk+1h+ dk+1), q = rq2 .

(10)

Further, we decompose the above intervals by the sampled period h. For the interval
Φ0,q, note that tkh+dk ∈ [rq1h+τq1 , rq1+1h+τq1+1), then, there exists a positive integer
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n0 = min
j
{jh|tkh+ dk < rq1h+ τq1 + jh}. Since rq1h+ τq1 + n0h ≤ rq1+1h+ τq1+1, we

consider the following intervals,

[tkh+ dk, rq1h+ τq1 + n0h), [rq1h+ τq1 + s1h, rq1h+ τq1 + s1h+ h).

Then, there exists a positive integer N0,q satisfying

rq1h+ τq1 +N0,qh < rq1+1h+ τq1+1 < rq1h+ τq1 +N0,qh+ h.

Therefore, the time interval Φ0,q can be decomposed into the following subintervals,

Φ0,q = I0,q
n0−1 ∪N

0,q

s1=n0
I0,q
s1 , q = rq1 ,

where  I0,q
n0−1 = [tkh+ dk, rq1h+ τq1 + n0h),
I0,q
s1 = [rq1h+ τq1 + s1h, rq1h+ τq1 + s1h+ h), s1 = n0, · · · , N0,q − 1,

I0,q
N0,q = [rq1h+ τq1 +N0,qh, rq1+1h+ τq1+1).

Let us define η(t) and eq(t) on the interval Φ0,q as

η(t) =

 t− rq1h− (n0 − 1)h, t ∈ I0,q
n0−1,

t− rq1h− s1h, t ∈ I0,q
s1 , s1 = n0, · · · , N0,q − 1,

t− rq1h−N0,qh, t ∈ I0,q
N0,q ,

(11)

and

eq(t) =

 y(rq1h)− y(rq1h+ (n0 − 1)h), t ∈ I0,q
n0−1,

y(rq1h)− y(rq1h+ s1h), t ∈ I0,q
s1 , s1 = n0, · · · , N0,q − 1,

y(rq1h)− y(rq1h+N0,qh), t ∈ I0,q
N0,q .

(12)

Then, η(t) satisfies
0 < τ1 ≤ η(t) < rq1h+ τq1 + n0h− rq1h− (n0 − 1)h < (1 + n1)h, t ∈ I0,q

n0−1,
0 < τ1 ≤ τq1 < η(t) < rq1h+ τq1 + s1h+ h− rq1h− s1h < (1 + n1)h, t ∈ I0,q

s1 ,
s1 = n0, · · · , N0,q − 1,

0 < τ1 ≤ τq1 < η(t) < (1 + n1)h, t ∈ I0,q
N0,q .

where τ1 = min{τk}, τM1
= (1 + n1)h.

Similarly, Φqs and Φ1,q can be decomposed by

Φqs = Iqs.0 ∪
Nq

s
s2=1 I

q
s.s2 , q = rq1+s, s = 1, 2, . . . , rq

2
− rq

1
− 1,

and
Φ1,q = ∪N

1,q

s3=0I
1,q
s3 , q = rq2 ,

where
Iqs.0 = [rq1+sh+ τq1+s, rq1+sh+ τq1+s + h), s = 1, 2, · · · , rq2 − rq1 − 1,
Iqs.s2 = [rq1+sh+ τq1+s + s2h, rq1+sh+ τq1+s + s2h+ h), s2 = 1, · · · , Nsq − 1,
Iq
s.Nq

s
= [rq1+sh+ τq1+s +Ns

qh, rq1+s+1h+ τq1+s+1),



124 Y. SHEN, Z. LI, AND G. YU

and  I1,q
0 = [rq2h+ τq2 , rq2h+ τq2 + h),
I1,q
s3 = [rq2h+ τq2 + s3h, rq2h+ τq2 + s3h+ h), s3 = 1, · · · , N1,q − 1,

I1,q
N1,q = [rq2h+ τq2 +Ns

qh, tk+1h+ dk+1).

Further, we define η(t) and eq(t) on the intervals Φqs and Φ1,q, respectively,

η(t) =



t− rq1+sh, t ∈ Iqs.0, s = 1, 2, · · · , rq
2
− rq

1
− 1,

t− rq1+sh− s2h, t ∈ Iqs.s2 , s2 = 1, · · · , Nsq − 1,
t− rq1+sh−Nsqh, t ∈ Iqs.Nq

s
,

t− rq2h, t ∈ I
1,q
0 ,

t− rq2h− s3h, t ∈ I1,q
s3 , s3 = 1, · · · , N1,q − 1,

t− rq2h−N1,qh, t ∈ I1,q
N1,q ,

(13)

and

eq(t) =



0, t ∈ Iqs.0, s = 1, 2, · · · , rq
2
− rq

1
− 1,

y(rq1+sh)− y(rq1+sh+ s2h), t ∈ Iqs.s2 , s2 = 1, · · · , Nsq − 1,
y(rq1+sh)− y(rq1+sh+Ns

qh), t ∈ Iq
s.Nq

s
,

0, t ∈ I1,q
0 ,

y(rq2h)− y(rq2h+ s3h), t ∈ I1,q
s3 , s3 = 1, · · · , N1,q − 1,

y(rq2h)− y(rq2h+Ns
qh), t ∈ I1,q

N1,q .

(14)

Then,

0 < τ1 ≤ τq1+s ≤ η(t) < (1 + n1)h, t ∈ Iqs.0, s = 1, 2, · · · , rq2 − rq1 − 1,
0 < τ1 ≤ τq1+s ≤ η(t) < (1 + n1)h, t ∈ Iqs.s2 , s2 = 1, · · · , Nsq − 1,
0 < τ1 ≤ τq1+s ≤ η(t) < (1 + n1)h, t ∈ Iq

s.Nq
s
, s = 1, 2, · · · , rq

2
− rq

1
− 1,

0 < τ1 ≤ τq2 ≤ η(t) < (1 + n1)h, t ∈ I1,q
0 ,

0 < τ1 ≤ τq2 ≤ η(t) < (1 + n1)h, t ∈ I1,q
s3 , s3 = 1, · · · , N1,q − 1,

0 < τ1 ≤ τq2 ≤ η(t) < (1 + n1)h, t ∈ I1,q
N1,q .

By (11), (12), (13) and (14), we can obtain that

y(qh) = y(t− η(t)) + eq(t) = C2x(t)− C2

∫ t

t−η(t)

ẋ(s) ds+ eq(t). (15)

The event-triggered mechanism (2) is rewritten as

eq
T (t)Ω1eq(t) ≤ σ1y

T (t− η(t))Ω1y(t− η(t))

= σ1[C2x(t)− C2

∫ t

t−η(t)

ẋ(s) ds]TΩ1[C2x(t)− C2

∫ t

t−η(t)

ẋ(s) ds]. (16)

Let ς(t) = t − qh. Then, the dynamical output feedback control law (6) can be
rewritten as

˙̂x(t) = Ax̂(t) +BKx̂(t− ς(t)) + L(y(t− η(t)) + eq(t)− C2x̂(t− ς(t))), t ∈ Φq. (17)
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Since Φq = [tkh+ dk, tk+1h+ dk+1), for the event generator 2, we can obtain

[tkh+ dk, tk+1h+ dk+1) = [tkh+ dk, tkh+ dk + h)

∪i=dM−1
i=1 [tkh+ dk + ih, tkh+ dk + ih+ h) ∪ [tkh+ dk + dMh, tk+1h+ dk+1).

Define

τ(t) =


t− tkh, t ∈ [tkh+ dk, tkh+ dk + h),
t− tkh− ih, t ∈ [tkh+ dk + ih, tkh+ dk + ih+ h),
i = 1, 2, · · · , dM − 1,
t− tkh− dMh, t ∈ [tkh+ dk + dMh, tk+1h+ dk+1),

(18)

and

ek(t) =


0, t ∈ [tkh+ dk, tkh+ dk + h),
x̂(tkh)− x̂(tkh+ ih), t ∈ [tkh+ dk + ih, tkh+ dk + ih+ h),
i = 1, 2, · · · , dM − 1,
x̂(tkh)− x̂(tkh+ dMh), t ∈ [tkh+ dk + dMh, tk+1h+ dk+1).

(19)

Then, τ(t) satisfies

0 < τ2 ≤ dk ≤ τ(t) < (1 + n2)h, t ∈ [tkh+ dk, tk+1h+ dk+1),

where τ2 = min{dk}, τM2
= (1 + n2)h.

Therefore,
x̂(tkh) = x̂(t− τ(t)) + ek(t), tkh = t− τ(t). (20)

The event-triggered mechanism (4) is rewritten as

ek
T (t)Ω2ek(t) ≤ σ2x̂

T (t− τ(t))Ω2x̂(t− τ(t)). (21)

Let e(t) = x(t)− x̂(t), τM = max{τM1
, τM2

}. By (7), (15), (17) and (20), the closed-
loop system can be obtained,

ẋ(t) = (A+BK)x(t)−BKe(t)−BK
∫ t
t−τ(t)

ẋ(s) ds+BK
∫ t
t−τ(t)

ė(s) ds

+BKek(t) +Bωω(t),

ė(t) = (A− LC2)e(t)−BK
∫ t
t−τ(t)

ẋ(s) ds+BK
∫ t
t−τ(t)

ė(s) ds

−(LC2 −BK)
∫ t
t−ς(t) ẋ(s) ds+ (LC2 −BK)

∫ t
t−ς(t) ė(s) ds

+LC2

∫ t
t−η(t)

ẋ(s) ds+BKek(t)− Leq(t) +Bωω(t), t ∈ Φq.

(22)

To end this section, we introduce the following definition and four lemmas which are
used later.

Definition 2.3. (Wang et al. [23]) The closed-loop system (22) with ω(t) = 0 is
asymptotically stable. If under zero initial condition, there exists an H∞ performance
index γ > 0, such that

‖x(t)‖2 ≤ γ‖ω(t)‖2, (23)

then, we call that (22) has H∞ performance with γ.
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Lemma 2.4. (Gu [10]) For any positive definite matrix G ∈ Rn×n, a scalar d > 0,
vector function $(s) : [0, d]→ Rn, then the following inequality holds,[∫ d

0

$(s) ds

]T
G

[∫ d

0

$(s) ds

]
≤ d

[∫ d

0

$(s)TG$(s) ds

]
.

Lemma 2.5. (Chen and Fei [2]) For any positive definite matrix Z ∈ Rn×n, Z = ZT

, S ∈ Rn×n,

(
Z S
∗ Z

)
≥ 0, a scalar function η(t) satisfying a ≤ η(t) ≤ b, and a

differentiable vector function χ(s), then the following inequality holds,

−(b− a)
∫ t−a
t−b χ̇

T (s)Zχ̇(s) ds ≤

−
[
χ(t− a)− χ(t− η(t))
χ(t− η(t))− χ(t− b)

]T [ −Z S
∗ −Z

] [
χ(t− a)− χ(t− η(t))
χ(t− η(t))− χ(t− b)

]
.

Lemma 2.6. (Han [11]) For a given symmetric matrix U ∈ Rn×n, U = UT > 0, a scalar
c > 0, and a differentiable vector function ϑ(s), then the following inequality holds,

− c
∫ t

t−c
ϑ̇T (s)Uϑ̇(s) ds ≤ −[ϑ(t)− ϑ(t− c)]TU [ϑ(t)− ϑ(t− c)].

Lemma 2.7. (Boyd [1]) For a given symmetric matrix W =

(
W11 W12

W21 W22

)
, where

W11 ∈ Rn×n, then, the following three conditions are equivalent to each other,
(1)W < 0;

(2)W11 < 0,W22 −W12
TW11

−1W12 < 0;

(3)W22 < 0,W11 −W12W22
−1W12

T < 0.

3. MAIN RESULTS

In this section, we construct a Lyapunov–Krasovskii functional and derive LMI-based
sufficient conditions to ensure H∞ performance of the closed-loop system (22).

Theorem 3.1. For given parameters n1, n2, τ1, τ2, σ1, σ2, h, the system (22) is asymp-
totic stable with an H∞ performance index γ for the disturbance attenuation, if there
exist symmetric matrices P > 0, Qi > 0(i = 1, 2, 3, 4, 5), Rj > 0(j = 1, 2, 3, 4), Ω1 > 0,
Ω2 > 0, and S1 > 0, S2 > 0, L and K with appropriate dimensions, such that(

Q3 S1

∗ Q3

)
≥ 0, (24)

(
Q5 S2

∗ Q5

)
≥ 0, (25)
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Ψ Π1

TΘ1 Π2
TΘ2 Π3

TΘ3

∗ Σ1 0 0
∗ ∗ Σ2 0
∗ ∗ ∗ Σ3

 < 0, (26)

where

Ψ =

 Ψ1 Ψ2 Ψ3

∗ Ψ4 08×6

∗ ∗ Ψ5

 ,

Ψ1 =



Ψ11 −PBK 0 0 0 0 Q2 0
∗ Ψ22 0 0 0 0 0 Q2

∗ ∗ Ψ33 0 0 0 0 0
∗ ∗ ∗ Ψ44 0 0 0 0

∗ ∗ ∗ ∗ Ψ55 0 Q3 − S1
T 0

∗ ∗ ∗ ∗ ∗ Ψ66 0 Q3 − S1
T

∗ ∗ ∗ ∗ ∗ ∗ Ψ77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ88


,

Ψ2 =



Q4 0 0 0 0 0 −PBK PBK
0 Q4 0 0 0 0 −PBK PBK

Q5 − S2
T 0 0 0 Q5 − S2 0 0 0

0 Q5 − S2
T 0 0 0 Q5 − S2 0 0

0 0 Q3 − S1 0 0 0 0 0
0 0 0 Q3 − S1 0 0 0 0
0 0 S1 0 0 0 0 0
0 0 0 S1 0 0 0 0


,

Ψ3 =



0 0 0 0 PBK PBω
Ψ2,17 Ψ2,18 PLC2 −PL PBK PBω

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

Ψ4 =



Ψ99 0 0 0 S2 0 0 0
∗ Ψ10,10 0 0 0 S2 0 0
∗ ∗ Ψ11,11 0 0 0 0 0
∗ ∗ ∗ Ψ12,12 0 0 0 0
∗ ∗ ∗ ∗ Ψ13,13 0 0 0
∗ ∗ ∗ ∗ ∗ Ψ14,14 0 0

∗ ∗ ∗ ∗ ∗ ∗ − Q1

3τM
0

∗ ∗ ∗ ∗ ∗ ∗ 0 − Q1

2τM


,
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Ψ5 = diag{− Q1

3τM
,− Q1

2τM
,− Q1

3τM
,−Ω1,−Ω2,−γ2I},

Ψ11 = P (A+BK) + (A+BK)TP +R1 +R3 −Q2 −Q4 + C1
TC1,

Ψ22 = P (A− LC2) + (A− LC2)TP +R1 +R3 −Q2 −Q4,

Ψ33 = Ψ44 = −2Q5 + S2 + S2
T ,Ψ55 = Ψ66 = −2Q3 + S1 + S1

T ,
Ψ77 = Ψ88 = R2 −R1 −Q2 −Q3,Ψ99 = Ψ10,10 = R4 −R3 −Q4 −Q5,
Ψ11,11 = Ψ12,12 = −R2 −Q3,Ψ13,13 = Ψ14,14 = −R4 −Q5,
Ψ2,17 = −Ψ2,18 = −P (LC2 −BK),

Π1
T=
(

Π11
T Π12

T
)
, Π2

T=
(

Π21
T Π22

T Π23
T Π24

T Π25
T
)
,

Π3
T=
(

Π31
T Π32

T Π33
T Π34

T Π35
T
)
,

Π11 = (C2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −C2 0 0 0 ),

Π12 = (I −I 0 0 0 0 0 0 0 0 0
0 0 0 −I I 0 0 0 0 0 0) ,

Π21 = Π22 = Π23 = Π24 = Π25 = ( A+BK −BK 0 0 0 0 0 0
0 0 0 0 0 0 −BK BK 0 0 0 0 BK Bω ),

Π31 = Π32 = Π33 = Π34 = Π35 = ( 0 A− LC2 0 0 0 0 0 0 0 0 0
0 0 0 −BK BK −(LC2 −BK) (LC2 −BK) LC2 −L BK Bω ),

Θ1=

(
Ω1 0
0 Ω2

)
,Σ1=

(
−Ω1

σ1
0

0 −Ω2

σ2

)
,

Σ2 = Σ3 = diag{−Q1

τM
,−Q2

τ12 ,− Q3

(τM1
−τ1)2

,−Q4

τ22 ,− Q5

(τM2
−τ2)2

},
Θ2 = Θ3 = diag{Q1, Q2, Q3, Q4, Q5}.

P r o o f . Construct the Lyapunov–Krasovskii functional V (t) = V1(t) + V2(t) + V3(t) +
V4(t), where

V1(t) = x(t)TPx(t) +

∫ t

t−τ1
x(s)

T
R1x(s) ds+

∫ t−τ1

t−τM1

x(s)
T
R2x(s) ds

+

∫ t

t−τ2
x(s)

T
R3x(s) ds+

∫ t−τ2

t−τM2

x(s)
T
R4x(s) ds, (27)

V2(t) =

∫ t

t−τM

∫ t

ρ

ẋ(s)
T
Q1ẋ(s) dsdρ+ τ1

∫ 0

−τ1

∫ t

t+ρ

ẋ(s)
T
Q2ẋ(s) dsdρ+

(τM1
− τ1)

∫ −τ1
−τM1

∫ t

ρ

ẋ(s)
T
Q3ẋ(s) dsdρ+ τ2

∫ 0

−τ2

∫ t

ρ

ẋ(s)
T
Q4ẋ(s) dsdρ (28)

+ (τM2
− τ2)

∫ −τ2
−τM2

∫ t

ρ

ẋ(s)
T
Q5ẋ(s) dsdρ,

V3(t) = e(t)TPe(t) +

∫ t

t−τ1
e(s)

T
R1e(s) ds+

∫ t−τ1

t−τM1

e(s)
T
R2e(s) ds

+

∫ t

t−τ2
e(s)

T
R3e(s) ds+

∫ t−τ2

t−τM2

e(s)
T
R4e(s) ds, (29)
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V4(t) =

∫ t

t−τM

∫ t

ρ

ė(s)
T
Q1ė(s) dsdρ+ τ1

∫ 0

−τ1

∫ t

t+ρ

ė(s)
T
Q2ė(s) dsdρ+

(τM1 − τ1)

∫ −τ1
−τM1

∫ t

ρ

ė(s)
T
Q3ė(s) dsdρ+ τ2

∫ 0

−τ2

∫ t

ρ

ė(s)
T
Q4ė(s) dsdρ (30)

+ (τM2 − τ2)

∫ −τ2
−τM2

∫ t

ρ

ė(s)
T
Q5ė(s) dsdρ.

When t ∈ Φq, calculating time derivatives of V1(t), V2(t), V3(t) and V4(t) along the
trajectories of (22) yields

V̇1(t)

= 2x(t)TPẋ(t) + x(t− τ1)T (R2 −R1)x(t− τ1) + x(t− τ2)T (R4 −R3)x(t− τ2) (31)

+ x(t)T (R1 +R3)x(t)− x(t− τM1
)TR2x(t− τM1

)− x(t− τM2
)TR4x(t− τM2

),

V̇2(t) = ẋT (t)[τMQ1 + τ1
2Q2 + (τM1

− τ1)2Q3 + τ2
2Q4 + (τM2

− τ2)2Q5]ẋ(t)

−
∫ t

t−τM
ẋT (s)Q1ẋ(s)ds− τ1

∫ t

t−τ1
ẋT (s)Q2ẋ(s) ds− τ2

∫ t

t−τ2
ẋT (s)Q4ẋ(s) ds

(32)

− (τM1
− τ1)

∫ t−τ1

t−τM1

ẋT (s)Q3ẋ(s) ds− (τM2
− τ2)

∫ t−τ2

t−τM2

ẋT (s)Q5ẋ(s) ds,

V̇3(t)

= 2e(t)TP ė(t) + e(t− τ1)T (R2 −R1)e(t− τ1) + e(t− τ2)T (R4 −R3)e(t− τ2) (33)

+ e(t)T (R1 +R3)e(t)− e(t− τM1
)TR2e(t− τM1

)− e(t− τM2
)TR4e(t− τM2

),

V̇4(t) = ėT (t)[τMQ1 + τ1
2Q2 + (τM1

− τ1)2Q3 + τ2
2Q4 + (τM2

− τ2)2Q5]ė(t)−∫ t

t−τM
ėT (s)Q1ė(s) ds− τ1

∫ t

t−τ1
ėT (s)Q2ė(s) ds− τ2

∫ t

t−τ2
ėT (s)Q4ė(s) ds (34)

− (τM1 − τ1)

∫ t−τ1

t−τM1

ėT (s)Q3ė(s) ds− (τM2 − τ2)

∫ t−τ2

t−τM2

ėT (s)Q5ė(s) ds.

From Lemma 2.4, we have

−
∫ t

t−τM
ẋT (s)Pẋ(s) ds ≤ −1

3

∫ t

t−η(t)

ẋ(s)
T
Pẋ(s) ds− 1

3

∫ t

t−τ(t)

ẋ(s)
T
Pẋ(s) ds

− 1

3

∫ t

t−ς(t)
ẋ(s)

T
Pẋ(s) ds ≤ − 1

3τM
[

∫ t

t−η(t)

ẋ(s)
T

dsP

∫ t

t−η(t)

ẋ(s) ds (35)

+

∫ t

t−τ(t)

ẋ(s)
T

dsP

∫ t

t−τ(t)

ẋ(s) ds+

∫ t

t−ς(t)
ẋ(s)

T
dsP

∫ t

t−ς(t)
ẋ(s) ds],
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and

−
∫ t

t−τM
ėT (s)P ė(s) ds ≤ −1

2

∫ t

t−τ(t)

ėT (s)P ė(s) ds− 1

2

∫ t

t−ς(t)
ėT (s)P ė(s) ds

≤ − 1

2τM

∫ t

t−τ(t)

ėT (s) dsP

∫ t

t−τ(t)

ė(s) ds− 1

2τM

∫ t

t−ς(t)
ėT (s) dsP

∫ t

t−ς(t)
ė(s) ds. (36)

From Lemma 2.5, we have

−(τM1
− τ1)

∫ t−τ1

t−τM1

ẋT (s)Q3ẋ(s) ds ≤

− [x(t− τ1)− x(t− η(t))]TQ3[x(t− τ1)− x(t− η(t))]

− [x(t− η(t))− x(t− τM1
)]TQ3[x(t− η(t))− x(t− τM1

)] (37)

− [x(t− τ1)− x(t− η(t))]TS1[x(t− η(t))− x(t− τM1
)]

− [x(t− η(t))− x(t− τM1)]TS1
T [x(t− τ1)− x(t− η(t))],

−(τM2
− τ2)

∫ t−τ2

t−τM2

ẋT (s)Q5ẋ(s) ds ≤

− [x(t− τ2)− x(t− τ(t))]TQ5[x(t− τ2)− x(t− τ(t))]

− [x(t− τ(t))− x(t− τM2
)]TQ5[x(t− τ(t))− x(t− τM2

)] (38)

− [x(t− τ2)− x(t− τ(t))]TS2[x(t− τ(t))− x(t− τM2)]

− [x(t− τ(t))− x(t− τM2)]TS2
T [x(t− τ2)− x(t− τ(t))],

−(τM1
− τ1)

∫ t−τ1

t−τM1

ėT (s)Q3ė(s) ds ≤

− [e(t− τ1)− e(t− η(t))]TQ3[e(t− τ1)− e(t− η(t))]

− [e(t− η(t))− e(t− τM1
)]TQ3[e(t− η(t))− e(t− τM1

)] (39)

− [e(t− τ1)− e(t− η(t))]TS1[e(t− η(t))− e(t− τM1)]

− [e(t− η(t))− e(t− τM1)]TS1
T [e(t− τ1)− e(t− η(t))],

−(τM2
− τ2)

∫ t−τ2

t−τM2

ėT (s)Q5ė(s) ds ≤

− [e(t− τ2)− e(t− τ(t))]TQ5[e(t− τ2)− e(t− τ(t))]

− [e(t− τ(t))− e(t− τM2
)]TQ5[e(t− τ(t))− e(t− τM2

)] (40)

− [e(t− τ2)− e(t− τ(t))]TS2[e(t− τ(t))− e(t− τM2)]

− [e(t− τ(t))− e(t− τM2)]TS2
T [e(t− τ2)− e(t− τ(t))].
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From Lemma 2.6, we can get

− τ1
∫ t

t−τ1
ẋT (s)Q2ẋ(s) ds ≤ −[x(t)− x(t− τ1)]TQ2[x(t)− x(t− τ1)], (41)

− τ2
∫ t

t−τ2
ẋT (s)Q4ẋ(s)dd ≤ −[x(t)− x(t− τ2)]TQ4[x(t)− x(t− τ2)], (42)

− τ1
∫ t

t−τ1
ėT (s)Q2ė(s) ds ≤ −[e(t)− e(t− τ1)]TQ2[e(t)− e(t− τ1)], (43)

− τ2
∫ t

t−τ2
ėT (s)Q4ė(s) ds ≤ −[e(t)− e(t− τ2)]TQ4[e(t)− e(t− τ2)]. (44)

Substituting (35), (37), (38), (41), (42) into (32), (36), (39), (40), (43), (44) into (34),
and combining (16), (21), and (31)-(34), we have

V̇ (t) ≤ V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + σ1[C2x(t)− C2

∫ t

t−τ(t)

ẋ(s) ds]TΩ1[C2x(t)

− C2

∫ t

t−τ(t)

ẋ(s) ds]− eq(t)TΩ1eq(t) + σ2[x(t)−
∫ t

t−η(t)

ẋ(s) ds− e(t)

+

∫ t

t−η(t)

ė(s)ds]TΩ2[x(t)−
∫ t

t−η(t)

ẋ(s) ds− e(t) +

∫ t

t−η(t)

ė(s) ds]

− ekT (t)Ω2ek(t) + x(t)TC1
TC1x(t)− z(t)T z(t)− γ2ω(t)Tω(t) + γ2ω(t)Tω(t).

(45)

Define

ξT =
(
ξ1
T ξ2

T ξ3
T ξ4

T
)
,Ξ1 = diag{σ1Ω1, σ2Ω2},

ξ1
T =

(
x(t)

T
e(t)

T
x(t− τ(t))

T
e(t− τ(t))

T
x(t− η(t))

T
e(t− η(t))

T
)
,

ξ2
T =

(
x(t− τ1)

T
e(t− τ1)

T
x(t− τ2)

T
e(t− τ2)

T
x(t− τM1)

T
e(t− τM1

)
T
)
,

ξ3
T =

(
x(t− τM

2
)
T

e(t− τM2
)
T ∫ t

t−τ(t)
ẋ(s)

T
ds

∫ t
t−τ(t)

ė(s)
T

ds
)
,

ξ4
T =

( ∫ t
t−ς(t) ẋ(s)

T
ds

∫ t
t−ς(t) ė(s)

T
ds

∫ t
t−η(t)

ẋ(s)
T

ds eq(t)
T

ek(t)
T

ω(t)
T
)
,

Ξ2 = Ξ3 = diag{τMQ1, τ1
2Q2, (τM1

− τ1)2Q3, τ2
2Q4, (τM2

− τ2)2Q5}.
Thus,

V̇ (t) + z(t)T z(t)− γ2ω(t)Tω(t) ≤

ξT

Ψ + ( Π1
T Π2

T Π3
T )

 Ξ1 0 0
0 Ξ2 0
0 0 Ξ3

 Π1

Π2

Π3

 ξ. (46)

From Lemma 2.7, the condition (26) is equivalent to

Ψ + ( Π1
T Π2

T Π3
T )

 Ξ1 0 0
0 Ξ2 0
0 0 Ξ3

 Π1

Π2

Π3

 < 0,
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which means that

V̇ (t) + z(t)T z(t)− γ2ω(t)Tω(t) < 0, t ∈ Φq. (47)

Since ∪∞k=0[tkh + dk, tk+1h + dk+1) = [t0,+∞) and x(t), e(t) are continuous on
[t0,+∞), V (t) is continuous on [t0,+∞). Integrating the inequality (47) from tkh+ dk
to t yields

V (t)− V (tkh+ dk) ≤ −
∫ t

tkh+dk

z(s)
T
z(s) ds+ γ2

∫ t

tkh+dk

ω(s)
T
ω(s) ds.

Then,

V (t)− V (0) ≤ −
∫ t

t0

z(s)
T
z(s) ds+ γ2

∫ t

t0

ω(s)
T
ω(s) ds.

Let t→∞, we can get ∫ ∞
0

z(s)
T
z(s) ds ≤ γ2

∫ ∞
0

ω(s)
T
ω(s) ds.

Therefore, ‖z(t)‖2 ≤ γ‖ω(t)‖2. The proof is completed.
We can design the dynamical output feedback H∞ controller with the two event-

triggered mechanisms based on Theorem 3.1. �

Theorem 3.2. For given parameters n1, n2, τ1, τ2, σ1, σ2, h, there exists an H∞
controller of (6) if there exist three symmetric matrices P > 0, Ω1 > 0, Ω2 > 0,
Ri > 0(i = 1, 2, 3, 4), and S1 > 0, S2 > 0, and two matrices L̄ and K̄ such that(

P S1

∗ P

)
≥ 0, (48)(

P S
2

∗ P

)
≥ 0, (49)

Ψ̄ Π̄T
1 Π̄T

2 Π̄T
3

∗ Σ̄1 0 0
∗ ∗ Σ̄2 0
∗ ∗ ∗ Σ̄3

 < 0. (50)

Then, the system (22) is asymptotic stable with an H∞ performance index γ for the
disturbance attenuation under the event-triggered mechanisms (2) and (4), where

Ψ̄ =

 Ψ̄1 Ψ̄2 Ψ̄3

∗ Ψ̄4 08×6

∗ ∗ Ψ̄5

 ,

Ψ̄1 =



Ψ̄11 −K̄ 0 0 0 0 P 0
∗ Ψ̄22 0 0 0 0 0 P
∗ ∗ Ψ̄33 0 0 0 0 0
∗ ∗ ∗ Ψ̄44 0 0 0 0

∗ ∗ ∗ ∗ Ψ̄55 0 P − S1
T 0

∗ ∗ ∗ ∗ ∗ Ψ̄66 0 P − S1
T

∗ ∗ ∗ ∗ ∗ ∗ Ψ̄77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ̄88


,
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Ψ̄2 =



P 0 0 0 0 0 −K̄ K̄
0 P 0 0 0 0 −K̄ K̄

P − S2
T 0 0 0 P − S2 0 0 0

0 P − S2
T 0 0 0 P − S2 0 0

0 0 P − S1 0 0 0 0 0
0 0 0 P − S1 0 0 0 0
0 0 S1 0 0 0 0 0
0 0 0 S1 0 0 0 0


,

Ψ̄3 =



0 0 0 0 K̄ PBω
Ψ̄2,17 Ψ̄2,18 L̄C2 −L̄ K̄ PBω

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

Ψ̄4 =



Ψ̄99 0 0 0 S2 0 0 0
∗ Ψ̄10,10 0 0 0 S2 0 0
∗ ∗ Ψ̄11,11 0 0 0 0 0
∗ ∗ ∗ Ψ̄12,12 0 0 0 0
∗ ∗ ∗ ∗ Ψ̄13,13 0 0 0
∗ ∗ ∗ ∗ ∗ Ψ̄14,14 0 0
∗ ∗ ∗ ∗ ∗ ∗ − P

3τM
0

∗ ∗ ∗ ∗ ∗ ∗ 0 − P
2τM


,

Ψ̄5 = diag{− P
3τM

,− P
2τM

,− P
3τM

,−Ω1,−Ω2,−γ2I},
Ψ̄11 = PA+ATP + K̄ + K̄T +R1 +R3 − 2P + C1

TC1,

Ψ̄22 = PA+ATP − L̄C2 − C2
T L̄T +R1 +R3 − 2P,

Ψ̄33 = Ψ̄44 = −2P + S2 + S2
T , Ψ̄55 = Ψ̄66 = −2P + S1 + S1

T ,
Ψ̄77 = Ψ̄88 = R2 −R1 − 2P, Ψ̄99 = Ψ̄10,10 = R4 −R3 − 2P,
Ψ̄11,11 = Ψ̄12,12 = −R2 − P, Ψ̄13,13 = Ψ̄14,14 = −R4 − P,
Ψ̄2,17 = −Ψ̄2,18 = −L̄C2 + K̄.

Π̄T
1 =
(

Π̄T
11 Π̄T

12

)
, Π̄T

2 =
(

Π̄T
21 Π̄T

22 Π̄T
23 Π̄T

24 Π̄T
25

)
,

Π̄T
3 =
(

Π̄T
31 Π̄T

32 Π̄T
33 Π̄T

34 Π̄T
35

)
, Π̄11 = Π11, Π̄12 = Π12,

Π̄21 = Π̄22 = Π̄23 = Π̄24 = Π̄25 = ( PA+ K̄ −K̄ 0 0 0 0 0 0
0 0 0 0 0 0 −K̄ K̄ 0 0 0 0 K̄ PBω ),

Π̄31 = Π̄32 = Π̄33 = Π̄34 = Π̄35 = ( 0 PA− L̄C2 0 0 0 0 0 0 0 0 0
0 0 0 −K̄ K̄ −L̄C2 + K̄ L̄C2 − K̄ L̄C2 −L̄ K̄ PBω ),

Σ̄1 = Σ1, Σ̄2 = Σ̄3 = diag{− P
τM
, P
τ12 ,

P
(τM1

−τ1)2
, P
τ22 ,

P
(τM2

−τ2)2
}.

Moreover, the control gain K and the observer gain L can be obtained by K =

(BTB)
−1
BTP−1K̄ and L = P−1L̄, respectively.
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P r o o f . Let P = Q1 = Q2 = Q3 = Q4 = Q5 , L̄ = PL and K̄ = PBK. Then, the
condition (26) implies that the condition (50). �

4. NUMERICAL SIMULATIONS

In order to show the effectiveness of the proposed methods, we consider a linear time-
invariant system with two event-triggering conditions, which the parameters are given
as follows.

A =

 0 1 0
0 −5 1
0 0.5 −9

 , B =

 1
2
1

 , Bω =

 1
1
1

 , C1 =

 0.1 0 0
0 0.2 0
0 0 0.1

 ,

C2 =

 1 0 0
0 2 0
0 0 1

 , ω(t) =

{
0.5 ∗ sin t, t ∈ [0, 10],

0, otherwise.

Case 1. Let h = 0.02, σ1 = 0.05, σ2 = 0.1, n1 = 2 , n2 = 3, τ1 = 0.001, τ2 =
0.01. The initial conditions are given as x̂(0) = ( 0.3 −0.2 0.1 )T and x(0) =
( 0.1 −0.3 0.4 )T . Applying the Matlab/LMIs toolbox, we can obtain γ = 1.9095,
the controller gain K = (−0.0345 0.0542 0.0506 ), and the observer gain

L =

 0.5877 −0.0267 −0.0304
0.7315 0.4857 0.1825
0.8115 0.2810 0.4866

 .

The corresponding trigger matrices

Ω1 =

 0.1962 −0.0426 −0.0184
−0.0426 3.5459 −4.5019
−0.0184 −4.5019 19.3247

 and Ω2 =

 0.3469 0.0331 0.0007
0.0331 3.8579 −2.4051
0.0007 −2.4051 5.2934

 .

The state trajectories and the release instants and release intervals are shown in Fiure 2
and Figure 3, respectively.

Case 2. Let h = 0.02, σ1= 0.1, σ2= 0.1, n1 = 2 , n2 = 3, τ1 = 0.001, τ2 = 0.01.
We can get γ = 2.7977, the controller gain K = (−0.0318 0.0345 0.0344 ), and the

observer gain L =

 0.3767 −0.0420 −0.0255
0.8703 0.4753 0.1446
0.9077 0.2358 0.4265

 .

The corresponding trigger matrices

Ω1 =

 0.1566 −0.0086 −0.0132
−0.0086 1.8798 −1.9466
−0.0132 −1.9466 10.3138

 and Ω2 =

 0.4182 0.0514 −0.0011
0.0514 4.2898 −2.0678
−0.0011 −2.0678 5.5935

 .

In Figure 4, and Figure 5, it is shown the state trajectories and the release instants and
release intervals, respectively.
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Fig. 4. The state trajectories.
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In the above simulations, network delays τk and dk are random in the interval [0, 4h].
From Figure 2 and Figure 4, we can obtain that the system under two event-triggered
schemes can be stabilized while guaranteeing H∞ performance. Moreover, in Figure 3,
it is shown that only 57 sample data are transmitted from the event generator 1 to
the controller, which means that 1.43% of the sample data are transmitted, and the
maximum release interval is 3.56; only 1.08% sample data are transmitted from the
event generator 2 to the plant, and the maximum release interval is 5.56. Similarly,
Figure 5 shows that the number of release instants in the event generator 1 is 43, and
the number of release instants in the event generator 2 is 39, which implies that 1.08%
and 0.96% of the sample signals are transmitted in the event generator 1 and the event
generator 2, respectively; the maximum release interval in the event generator 1 and
the event generator 2 are 5.58 and 8.3, respectively. If only the event generator 1 is
considered, the release rates of the event-triggered mechanism (2) under different value
of σ1 are shown in Table 1. As the parameter σ1 increases, the release rate of the
event-triggered mechanism (2) will decrease. If σ1 = 0, we can get that the release rate
of the event-triggered mechanism (2) is 100%. From the above analysis, the proposed
two event-triggered schemes can save network bandwidth and reduce network computing
resources while guaranteeing H∞ performance.

σ1 0 0.05 0.07 0.08 0.1 0.2
rt(%) 100 1.43 1.33 1.18 1.08 0.75

Tab. 1. The release rate of the event-triggered mechanism (2) under

different σ1.

5. CONCLUSION

The problem of output feedback H∞ control for NCS based on two channel event-
triggered mechanisms was investigated in this paper. The considered transmission delays
were random and the data buffer units were removed. The dynamical output feedback
controller and the plant were updated immediately whenever the triggered data arrived.
By using interval decomposition and time delay method, LMI-based sufficient condi-
tions were obtained for H∞ performance of the closed-loop system. Finally, numerical
simulations verified the effectiveness of the proposed methods.
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