Kybernetika 56 no. 5, 903-915, 2020

Secret sharing schemes for ports of matroids of rank 3

Oriol FarràsDOI: 10.14736/kyb-2020-5-0903

Abstract:

A secret sharing scheme is ideal if the size of each share is equal to the size of the secret. Brickell and Davenport showed that the access structure of an ideal secret sharing scheme is determined by a matroid. Namely, the minimal authorized subsets of an ideal secret sharing scheme are in correspondence with the circuits of a matroid containing a fixed point. In this case, we say that the access structure is a matroid port. It is known that, for an access structure, being a matroid port is not a sufficient condition to admit an ideal secret sharing scheme. In this work we present a linear secret sharing scheme construction for ports of matroids of rank 3 in which the size of each share is at most $n$ times the size of the secret. Using the previously known secret sharing constructions, the size of each share was $O(n^2/\log n)$ the size of the secret. Our construction is extended to ports of matroids of any rank $k\geq 2$, obtaining secret sharing schemes in which the size of each share is at most $n^{k-2}$ times the size of the secret. This work is complemented by presenting lower bounds: There exist matroid ports that require $(\mathbb{F}_q,\ell)$-linear secret schemes with total information ratio $\Omega(2^{n/2}/\ell n^{3/4}\sqrt{\log q})$.

Keywords:

matroids, secret sharing schemes, matroid ports

Classification:

94A60, 94A62, 05B35

References:

  1. B. Applebaum, A. Beimel, O. Farràs, O. Nir and N. Peter: Secret-Sharing Schemes for General and Uniform Access Structures. In: Advances in Cryptology - EUROCRYPT 2019, Lect. Notes Comput. Sci. 11478 (2019), Springer, pp. 441-471.   DOI:10.1007/978-3-030-17659-4\_15
  2. L. Babai, A. Gál and A. Wigderson: Superpolynomial lower bounds for monotone span programs. Combinatorica 19 (1999), 301-319.   DOI:10.1007/s004930050058
  3. N. Bansal, R. A. Pendavingh and J. G. van der Pol: On the number of matroids. Combinatorica 49 (2013), 675-694.   DOI:10.1007/s00493-014-3029-z
  4. A. Beimel: Secret-sharing schemes: A survey. In: IWCC 2011, Lect. Notes Comput. Sci. 6639 (2019), Springer, pp. 11-46.   DOI:10.1007/978-3-642-20901-7\_2
  5. A. Beimel, A. Ben-Efraim, C. Padró and I. Tyomkin: Multi-linear secret-sharing schemes. In: TCC, Lect. Notes Comput. Sci. 8349 (2019), Springer, pp. 394-418.   DOI:10.1007/978-3-642-20901-7\_2
  6. A. Beimel and B. Chor: Universally ideal secret sharing schemes. IEEE Trans. Inform. Theory 40 (1994), 3, 786-794.   DOI:10.1109/18.335890
  7. A. Beimel and N. Livne: On matroids and nonideal secret sharing. IEEE Trans. Inform. Theory 54 (2008), 6, 2626-2643.   DOI:10.1109/tit.2008.921708
  8. A. Beimel, N. Livne and C. Padró: Matroids can be far from ideal secret sharing. In: TCC 2008, Lect. Notes Comput. Sci. 4948 (2008), Springer, pp. 194-212.   DOI:10.1007/978-3-540-78524-8\_12
  9. A. Ben-Efraim: Secret-sharing matroids need not be algebraic. Discrete Math. 339 (2016), 8, 2136-2145.   DOI:10.1016/j.disc.2016.02.012
  10. J. C. Benaloh and J. Leichter: Generalized secret sharing and monotone functions. In: CRYPTO'88, Lect. Notes Comput. Sci. 403 (1988), Springer, pp. 27-35.   DOI:10.1007/0-387-34799-2\_3
  11. G. R. Blakley: Safeguarding cryptographic keys. In: AFIPS Conference Proc. 48 (1979), pp. 313-317.   DOI:10.1109/mark.1979.8817296
  12. C. Blundo, A. De Santis, D. R. Stinson and U. Vaccaro: Graph decomposition and secret sharing schemes. J. of Cryptology 8 (1995), 1, 39-64.   DOI:10.1007/bf00204801
  13. E. F. Brickell and D. M. Davenport: On the classification of ideal secret sharing schemes. J. of Cryptology 4 (1991), 73, 123-134.   DOI:10.1007/bf00196772
  14. L. Csirmaz: The size of a share must be large. J. Cryptology 1 (1997), 4, 223-231.   DOI:10.1007/s001459900029
  15. L. Csirmaz, P. Ligeti and G. Tardos: Erdös-Pyber theorem for hypergraphs and secret sharing. Graphs Combinator. 31 (2015), 5, 1335-1346.   DOI:10.1007/s00373-014-1448-7
  16. P. Erdös and L. Pyber: Covering a graph by complete bipartite graphs. Discrete Math. 170 (1997), 1-3, 249-251.   DOI:10.1016/s0012-365x(96)00124-0
  17. O. Farràs, T. Kaced, S. Martín and C. Padró: Improving the linear programming technique in the search for lower bounds in secret sharing. In: Advances in Cryptology -- Eurocrypt 2018, volume 10820 Lecture Notes in Comput. Sci. 10820 (2018), Springer, pp. 597-621.   DOI:10.1007/978-3-319-78381-9\_22
  18. O. Farràs, J. Martí-Farré and C. Padró: Ideal multipartite secret sharing schemes. J. Cryptology 25 (2012), 434-463.   DOI:10.1007/s00145-011-9101-6
  19. E. Gürpinar and A. Romashchenko: How to Use Undiscovered Information Inequalities: Direct Applications of the Copy Lemma. In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 1377-1381.   CrossRef
  20. R. L. Graham and N. J. A. Sloane: Lower bounds for constant weight codes. IEEE Trans. Inform. Theory 26 (1980), 1, 37-43.   DOI:10.1109/tit.1980.1056141
  21. A. W. Ingleton: Representation of matroids. In: Combinatorial Mathematics and its Applications, (D. J. A. Welsh, ed.), Academic Press, London 1971, pp. 149-167.   CrossRef
  22. W.-A. Jackson and K. M. Martin: Geometric secret sharing schemes and their duals. Codes Cryptography 4 (1994), 1, 83-95.   DOI:10.1007/bf01388562
  23. A. D. Korshunov: Monotone Boolean functions. Russ. Math. Surv. 58 (2003), 5, 929-1001.   DOI:10.1070/rm2003v058n05abeh000667
  24. D. E. Knuth: The asymptotic number of geometries. J. Combinator. Theory, Ser. A 16 (1974), 3, 398-400.   DOI:10.1016/0097-3165(74)90063-6
  25. T. Liu and V. Vaikuntanathan: Breaking the circuit-size barrier in secret sharing. In: 50th STOC 2018, pp. 699-708.   CrossRef
  26. J. Martí-Farré and C. Padró: Secret sharing schemes on sparse homogeneous access structures with rank three. Electr. J. Comb. 11 (2004), 1.   DOI:10.37236/1825
  27. J. Martí-Farré and C. Padró: Ideal secret sharing schemes whose minimal qualified subsets have at most three participants. Des. Codes Cryptography 52 (2009), 1, 1-14.   DOI:10.1007/s10623-008-9264-9
  28. J. Martí-Farré and C. Padró: On secret sharing schemes, matroids and polymatroids. J. Math. Cryptology 4 (2010), 2, 95-120.   DOI:10.1007/s10623-008-9264-9
  29. F. Matúš: Probabilistic conditional independence structures and matroid theory: Background. Int. J. Gen. Syst. 22 (1994), 185-196.   DOI:10.1080/03081079308935205
  30. F. Matúš: Matroid representations by partitions. Discrete Math. 203 (1999), 169-194.   DOI:10.1016/s0012-365x(99)00004-7
  31. F. Matúš: Adhesivity of polymatroids. Discrete Math. 307 (2007), 2464-2477.   DOI:10.1016/j.disc.2006.11.013
  32. D. Mayhew, M. Newman, D. Welsh and G. Whittle: On the asymptotic proportion of connected matroids. Eur. J. Comb. 32 (2011), 6, 882-890.   DOI:10.1016/j.ejc.2011.01.016
  33. J. G. Oxley: Matroid Theory. Second Edition. Oxford Graduate Texts in Mathematics 21, The Clarendon Press, Oxford 2011.   CrossRef
  34. C. Padró: Lecture notes in secret sharing. Cryptology ePrint Archive, Report 2012/674 (2912).   CrossRef
  35. P. D. Seymour: A forbidden minor characterization of matroid ports. Quart. J. Math. Oxford Ser. 27 (1976), 407-413.   DOI:10.1093/qmath/27.4.407
  36. A. Shamir: How to share a secret. Comm. ACM 22 (1979), 612-613.   DOI:10.1145/359168.359176
  37. J. Simonis and A. Ashikhmin: Almost affine codes. Designs Codes Cryptogr. 14 (1998), 2, 179-197.   DOI:10.1023/a:1008244215660
  38. I. Wegener: The Complexity of Boolean Functions. Wiley-Teubner, 1987.   CrossRef