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SECRET SHARING SCHEMES FOR PORTS OF MATROIDS
OF RANK 3

Oriol Farràs

A secret sharing scheme is ideal if the size of each share is equal to the size of the secret.
Brickell and Davenport showed that the access structure of an ideal secret sharing scheme is
determined by a matroid. Namely, the minimal authorized subsets of an ideal secret sharing
scheme are in correspondence with the circuits of a matroid containing a fixed point. In this
case, we say that the access structure is a matroid port. It is known that, for an access structure,
being a matroid port is not a sufficient condition to admit an ideal secret sharing scheme.

In this work we present a linear secret sharing scheme construction for ports of matroids
of rank 3 in which the size of each share is at most n times the size of the secret. Using the
previously known secret sharing constructions, the size of each share was O(n2/ logn) the size
of the secret.

Our construction is extended to ports of matroids of any rank k ≥ 2, obtaining secret sharing
schemes in which the size of each share is at most nk−2 times the size of the secret. This work is
complemented by presenting lower bounds: There exist matroid ports that require (Fq, `)-linear
secret schemes with total information ratio Ω(2n/2/`n3/4√log q).
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1. INTRODUCTION

Secret sharing schemes are cryptographic mechanisms that are designed to protect a
secret value by distributing it into shares. They were introduced by Blakley [11] and
Shamir [36], and are used to prevent the disclosure or the loss of the secret value in
many cryptographic applications. In this work we consider schemes that are information-
theoretically secure, i. e. their security does not rely on any computational assumption. It
is common to assume that the secret is held by a dealer, and each share is sent privately
to a different participant. Then a subset of participants is authorized if their shares
determine the secret value, and forbidden if their shares do not contain any information
on the secret value. The access structure of a secret sharing scheme is the family of
authorized subsets. In this work we just consider schemes that are perfect, which means
that every subset of participants is either authorized or forbidden.
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The efficiency of the schemes depends on the size of the shares that are generated. If
the size of each share is equal to the size of the secret, then the scheme is ideal, and its
access structure is called ideal as well. This is the optimal situation for perfect schemes.
In order to study the efficiency of non-ideal schemes, we consider the information ratio
of a scheme, which is a parameter that approximates the size of the largest share divided
by the size of the secret. In general, for a given access structure, it is not known what the
scheme with smallest information ratio is. By means of general constructions, we know
that every access structure on a set of n participants admits a scheme with information
ratio O(2cn) for some c < 1 [1, 25]. On the other hand, Csirmaz proved that there exists
a family of access structures that require schemes with information ratio O(n/ log n) [14].
Currently, these are the best upper and lower bounds on the information ratio.

For some particular families of access structures, there exist specific techniques that
allow a deeper insight to the efficiency problem. The study of these particular cases is
also an interesting approach to infer more general results and to understand the nature
of the secret sharing problem. This is the case of ideal access structures. Brickell and
Davenport [13] proved that ideal access structures are determined by matroids. Namely,
the minimal authorized subsets of ideal secret sharing schemes are in correspondence
with the circuits of a matroid containing a fixed point. In this case, we say that the
access structure is a port of that matroid, or that it is a matroid port. Conversely, ports
of linearly representable matroids admit ideal linear secret sharing schemes. Despite the
characterization of ideal access structures is still an open problem, these results were
used in many works in order to construct ideal linear secret sharing schemes and, among
particular families of access structures, to characterize the ideal ones (e. g. [6, 18, 26, 27]).
Later, Mart́ı-Farré and Padró showed that the information ratio of secret sharing schemes
realizing access structures that are not matroid ports is at least 3/2 [28].

The connection between ideal access structures and matroids was studied in sev-
eral subsequent works. Matúš showed that matroids whose ports admit ideal secret
sharing schemes are multiples of entropic polymatroids and admit representations by
partitions [29, 30]. He studied the adhesivity of polymatroids, and showed that en-
tropic polymatroids are selfadhesive [31], providing new tools for the characterization
of ideal access structures. Simonis and Ashikhmin [37] constructed ideal linear schemes
from matroids that do not admit linear representations but admit multilinear represen-
tations, and Beimel et al. [8] studied the power of these constructions. Matroids that
admit linear or multilinear representations are representable by partitions [30], but there
exist algebraic matroids that are not [9]. Also, there exist ports of matroids that are
not representable by partitions that admit schemes in which the information ratio can
be arbitrarily close to 1 [7].

Little is known about the efficiency of secret sharing schemes for matroids that are
not representable by partitions. For the Vámos matroid and other matroids on a small
number of points, it is possible to obtain bounds on the size of the shares by means
of non-Shannon information inequalities [8, 17, 19, 30]. However, it is hard to obtain
valuable bounds for matroids on a large number of points. There is a port of the Vámos
matroid in which the information ratio is at least 561/491 [19]. This is the current best
lower bound on the information ratio for matroid ports, while there are no specific upper
bounds.
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The objective of this work was to find general results on the information ratio of
ports of matroids. In particular, find secret sharing constructions that exploit the com-
binatorial properties of matroids. Matroids of rank 2 are linearly representable, and so
ports of matroids of rank 2 admit ideal linear schemes. However, for k > 2, there exist
matroids of rank k that do not admit ideal schemes [30]. Moreover, it is conjectured [32]
that asymptotically almost every matroid has a minor that is the Vámos matroid, and
so it is conjectured that almost every matroid port needs schemes with information ratio
larger than 1.

In this work, we present a linear secret sharing construction for matroid ports that
improves the general constructions when the rank of the matroid is small. First, we
present a secret sharing scheme for ports of matroids of rank 3 that has information
ratio at most n. It improves by a factor of O(n/ log n) the information ratio of the
previous best scheme for this family of access structures.

The construction for ports of matroids of rank 3 is extended recursively to ports
of matroids of rank k for any k > 2. The resulting scheme has information ratio at
most nk−2. For k � lnn/ ln lnn, it improves the previously known constructions. It is
the first general construction for matroid ports that takes benefit of its combinatorial
properties.

We found that these results also have applications on the complexity of Boolean
functions defined by ports of matroids. We show that ports of matroids of rank k admit
monotone formulas of size O(nk−1 log n).

Since the secret sharing construction for matroids of rank k > 2 only uses the advan-
tage gained on matroids of rank 2, it is very likely that the construction can be refined.
Also, it is possible that the construction for matroids of rank 3 can be improved by tak-
ing into account that simple matroids of rank 3 can be embedded in projective planes,
or by using non-linear schemes. However, the potential improvement of the linear con-
structions is limited. We show that there exist matroid ports that require (Fq, `)-linear
secret schemes with total information ratio Ω(2n/2/`n3/4

√
log q). The bound is obtained

by counting the number of matroid ports and using a counting argument from [2].

Section 2 is dedicated to preliminaries on secret sharing schemes, and Section 3 is
dedicated to matroid ports. Our constructions are presented in Section 4, and the lower
bounds are presented in Section 5.

2. SECRET SHARING SCHEMES

In this section, we define secret sharing schemes and we present some results on ho-
mogeneous access structures. For an introduction to secret sharing, see [4, 34]. Given
a discrete random vector S = (Si)i∈Q and a set X ⊆ Q, the Shannon entropy of the
random variable SX = (Si)i∈X is denoted by H(SX).

Definition 2.1. An access structure on a set P is a monotone increasing family of
subsets Γ ⊆ P(P ). The family of its minimal subsets is denoted by min Γ.

Definition 2.2. Let P be a set and Q = P ∪{po}. A secret sharing scheme Σ on P is a
collection (Si)i∈Q of discrete random variables where H(Sp0) > 0 and H(Sp0 | SP ) = 0.
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The random variable Sp0 corresponds to the secret value that is distributed into shares
among the participants in P according to the random variables (Si)i∈P .

Definition 2.3. Let Σ = (Si)i∈Q be a secret sharing scheme. A set X ⊆ P is forbidden
for Σ if H(Sp0 | SX) = H(Sp0), while it is authorized for Σ if H(Sp0 | SX) = 0. The
access structure of Σ is the family of authorized subsets of Σ. A secret sharing scheme
is perfect if every set of players is either forbidden or authorized.

Definition 2.4. Let F be a finite field and let ` be a positive integer. A secret sharing
scheme Σ = (Si)i∈Q is (F, `)-linear if the random variables (Si)i∈Q are given by surjec-
tive F-linear maps Si : V → Ei, where V and Ei are F-vector spaces, the probability
distribution taken on V is the uniform one, and E0 = F`. We say that Σ is `-linear if it
is (F, `)-linear for some finite field F.

The information ratio σ(Σ) and the total information ratio σT(Σ) of a secret sharing
Σ = (Si)i∈Q are defined as

σ(Σ) =
maxi∈P H(Si)

H(Sp0
)

and σT(Σ) =

∑
i∈P H(Si)

H(Sp0
)

.

This work is restricted to the study of secret sharing schemes whose access structure
is connected. That is, that every participant is in at least one minimal authorized subset.

Definition 2.5. We say that a secret sharing scheme Σ is ideal if the information ratio
of Σ is 1. In this case, we say that its access structure is ideal as well.

Next, we introduce some set operations that will be used in this work. For any
Λ ⊆ 2P , we define the closure of Λ as cl(Λ) = {A∪B : A ∈ Λ, B ⊆ P \A}. Since access
structures are monotone increasing, Γ = cl(Γ) = cl(min Γ) for every access structure Γ.

For every access structure Γ on P and B ⊆ P , we define the access structures Γ\B
and Γ/B on the set P \B by

Γ\B = {A ⊆ P \B : A ∈ Γ} and Γ/B = {A ⊆ P \B : A ∪B ∈ Γ}.

The operations \ and / are called deletion and contraction, respectively. Any access
structure obtained by a sequence of deletions and contractions of subsets of P is a minor
of Γ. Minors of access structures correspond to a natural scenario. Namely, if several
participants of a secret sharing scheme leave the scheme or reveal their shares, then the
new access structure is a minor of the original one. The dual of an access structure Γ on
a set P is the access structure Γ∗ on the same set defined by Γ∗ = {A ⊆ P : P \A /∈ Γ}.
The next result is an extension of a result in [22].

Theorem 2.6. (Padró [34]) If Σ is linear secret sharing scheme with access structure
Γ, then Γ∗ admits a linear secret sharing scheme of the same information ratio.

Every access structure Γ on P = [n] defines a monotone Boolean formula f : {0, 1}P →
{0, 1} where f(x) = 1 if and only if the support of x is in Γ. Benaloh and Leichter [10]
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presented a general method to construct secret sharing schemes in which, given a mono-
tone formula of length L computing f , it creates a secret sharing scheme with total
information ratio L. In particular, if Γ is an access structure whose minimal subsets
are of size at most k ≤ n/2, the DNF formula for Γ gives a secret sharing scheme with
information ratio at most

(
n−1
k−1
)
. As a consequence of the results in [15], these access

structures also admit schemes with information ratio at most nk−1

logn ( 1
k! + o(1)). If k is

close n/2, then the schemes in [1, 25] have smaller information ratio. In this work, we
denote the logarithmic function with base 2 and base e by log and ln, respectively.

3. MATROID PORTS

In this section we introduce the family of matroid ports and we present properties of
matroids that are used later in this work.

A matroid is a pairM = (Q, r), where Q is a non-empty finite set and r is a mapping
r : 2Q → Z satisfying the following properties for all X,Y ⊆ Q:

1. 0 ≤ r(X) ≤ |X|, and

2. r is monotone increasing: if X ⊆ Y , then r(X) ≤ r(Y ), and

3. r is submodular: r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

The set Q and the mapping r are called, respectively, the ground set and the rank
function of the matroidM. If a nonempty subset A ⊆ Q satisfies that r(A) > r(A\{p})
for all p ∈ A, then A is independent. If not, it is dependent. The maximal independent
subsets are called basis, and the minimal dependent subsets are called circuits. A matroid
M = (Q, r) is connected if for every x, y ∈ Q there exists a circuit containing both x
and y. A matroid is paving if its circuits are of size r(M) or r(M) + 1.

Given a matroid M = (Q, r) and a set Z ⊆ Q, we define the matroids M\Z =
(Q\Z, r\Z) andM/Z = (Q\Z, r/Z) with r\Z(A) = r(A) and r/Z(A) = r(A∪Z)−r(Z).
Every matroid that can be obtained from M by repeatedly applying these operations
is called a minor of M. For every minor M′ of M, there exist Z1, Z2 ⊆ Q for which
M′ = (M\Z1)/Z2. The dual of M is the matroid M∗ = (Q, r∗) whose rank function
r∗ : 2Q → Z is defined by r∗(X) = |X| − r(Q) + r(Q \X).

Definition 3.1. Let Γ be an access structure on P and let M = (Q, r) be a matroid
on Q = P ∪ {p0}. We say that min Γ is a port of M at p0 if

min Γ = {A ⊆ P : A ∪ {p0} is a circuit of M}.

If min Γ is a port of a matroid, then Γ = {A ⊆ P : r(A ∪ {p0}) = r(A)}. By an abuse
of notation, in this case we also say that Γ is a port of M, and that Γ is a matroid port.
If Γ is a port of the matroid M, and B ⊆ P , then Γ\B is a port of the matroid M\B
and Γ/B a port of the matroid M/B.

The interest in matroid ports for secret sharing is due to the following result of Brickell
and Davenport [13].

Theorem 3.2. (Brickell and Davenport [13]) Every ideal access structure is a matroid
port.
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If Γ is a connected access structure on P that is a matroid port, then there exists a
unique connected matroidM on Q = P ∪{p0} with Γ = Γp0

(M). This is a consequence
of the following two facts. First, by [33, Proposition 4.1.2], a matroid M is connected
if and only if one of its ports is connected, and in this case all the ports of M are
connected. Second, a connected matroid is completely determined by the circuits that
contain some given point [33, Theorem 4.3.3]. Therefore, there is a bijection between
the family of connected access structures on P that are ports of matroids, and the family
of connected matroids on Q. This bijection is used in the proof of Proposition 5.1.

The following lemma shows a connection between the ports of a matroid and the
ports of its dual.

Lemma 3.3. If Γ is the p0-port of a matroid M, then Γ∗ is the p0-port of M∗.

Matroid ports were characterized by Seymour [35]. The forbidden minors of the

matroid ports are the access structures Φ, Φ̂, Φ̂∗, and Ψs described below.
The access structures Φ, Φ̂, Φ̂∗ are defined on P = {p1, p2, p3, p4}. The minimal

subsets of Φ are {p1, p2}, {p2, p3}, {p2, p4} and {p3, p4}, the minimal subsets of Φ̂ are

{p1, p2}, {p2, p3} and {p3, p4}, and the minimal subsets of Φ̂∗ are {p1, p3, p4}, {p2, p3}
and {p2, p4}. For s ≥ 3, Ψs is the access structure on P = {p1, . . . , ps, ps+1} whose
minimal subsets are {p1, . . . , ps} and {pi, ps+1} for every i = 1, . . . , s.

Theorem 3.4. (Seymour [35]) An access structure is a matroid port if and only if it

has no minor isomorphic to Φ, Φ̂, Φ̂∗, or Ψs for some s ≥ 3.

Mart́ı-Farré and Padró used the previous characterization of matroid ports to obtain
a bound on the information ratio of secret sharing schemes realizing access structures
that are not matroid ports [28].

Theorem 3.5. (Mart́ı-Farré and Padró [28]) — The information ratio of secret sharing
schemes realizing access structures that are not matroid ports is at least 3/2.

The rest of this section is dedicated to some results on the information ratio of matroid
ports. If Γ is a 2-homogeneous access structure that defines a connected graph, and this
graph is not a complete multipartite graph, then the information ratio of the schemes
realizing Γ is at least 3/2 [12]. Namely, it was shown in [12] that if a connected graph is

not a complete multipartite graph, then it has a minor isomorphic to Φ or Φ̂. Therefore,
they showed that if G is a connected graph that is not complete multipartite graph, then
it is not a matroid port. On the other hand, we know that complete multipartite graphs
admit ideal linear secret sharing schemes [13]. Therefore, we obtain the following result.

Corollary 3.6. Let Γ be an access structure whose minimal subsets are of size at most 2.
Then it is a matroid port if and only if min Γ is the union of disjoint complete multipartite
graphs and singletons. In this case, Γ admits an ideal (F, 1)-linear secret sharing scheme
for any finite field F with |F| ≥ n.

The characterization of the ideal access structures whose minimal authorized subsets
are of size at most 3 is an open problem. Matúš [30], and Mart́ı-Farré and Padró [27]
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studied this family of access structures, and showed that there are matroid ports that do
not admit ideal secret sharing schemes. The characterization of the ideal 3-homogeneous
access structures is also an open problem, but for the case of sparse access structures
it was solved in [26]. In both cases, for matroid ports that do not admit ideal schemes,
there are no specific bounds on the information ratio.

4. SCHEMES FOR MATROID PORTS

This section is dedicated to the construction of secret sharing schemes for matroid ports.
First, in Theorem 4.1, we present a construction for ports of matroids of rank 3, and
then, in Theorem 4.3, we extend it to arbitrary matroids.

4.1. Ports of matroids of rank 3

Theorem 4.1. Let Γ be port of a matroid of rank 3. Then it admits a 1-linear secret
sharing scheme whose information ratio is at most n.

In order to prove this theorem, we need to define some specific notation and a technical
result. Let Γ be an access structure on P . For any p ∈ P , we define the access structure
Γp on P \ {p} as the one with

min Γp = {A ⊆ P \ {p} : A ∪ {p} ∈ min Γ},

and the access structure Γ̃p = Γ\{p}. Observe that

Γ = cl({A ∪ {p} : A ∈ min Γp for some p ∈ P}) (1)

= cl({A ∪ {p} : A ∈ min Γp ∪min Γ̃p for some p ∈ P}). (2)

Lemma 4.2. Let Q = P ∪ {p0}, let p ∈ P , let M = (Q, r) be a matroid of rank k > 1,
and let Γ be the p0-port ofM. If Γ is connected and {p} /∈ Γ, then there exists an access
structure Γ′ that is a port of a matroid of rank k − 1 satisfying

min Γp ⊆ min Γ′ ⊆ min Γp ∪min Γ̃p.

P r o o f . LetM′ = (Q \ {p}, r′) be the matroid defined byM′ =M/{p}, and let Γ′ be
the p0-port ofM′. Since Γ is connected, then r′(A) = r(A∪{p})−r({p}) = r(A∪{p})−1
for every A ⊆ Q \ {p}. Hence,

r′(A) ≤ r(A) ≤ r′(A) + 1 for every A ⊆ Q \ {p}. (3)

First we prove that min Γ′ ⊆ min Γp∪min Γ̃p. Let A∪{p0} be a circuit ofM′. By (3),
|A| ≤ r(A ∪ {p0}) ≤ |A|+ 1. If r(A ∪ {p0}) = |A|, then A ∪ {p0} is dependent in M. In
this case, A∪{p0} is a circuit ofM, because r(A∪{p0}\{q}) ≥ r′(A∪{p0}\{q}) = |A|
for every q ∈ A ∪ {p0}. Therefore, A ∈ min Γ, and A ∈ min Γ̃p because p /∈ A.

If r(A ∪ {p0}) = |A|+ 1, then A ∪ {p0} is independent in M. The subset A ∪ {p, p0}
is dependent in M because r(A ∪ {p, p0}) = r′(A ∪ {p0}) + 1 = |A| + 1. Moreover, it
is a circuit, because r(A ∪ {p, p0} \ {q}) = r′(A ∪ {p0} \ {q}) + 1 = |A| + 1 for every
q ∈ A ∪ {p0}, and r(A ∪ {p0}) = |A|+ 1. Hence, A ∪ {p} ∈ min Γ and A ∈ min Γp.
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Finally, we prove that min Γp ⊆ min Γ′. Suppose that there exists A ∈ min Γp\min Γ′.
In this case, A ∪ {p, p0} is a circuit of M and A ∪ {p0} is not a circuit of M′. Since
r′(A∪ {p0}) = r(A∪ {p, p0})− 1 = |A|, A∪ {p0} is a dependent set of M′ that is not a
circuit. Hence, there exists q ∈ A∪{p0} for which r′(A∪{p0}\{q}) = |A|−1. But then
r(A ∪ {p, p0} \ {q}) = r′(A ∪ {p0} \ {q}) + 1 = |A|, which implies that A ∪ {p, p0} \ {q}
is a dependent set of M, a contradiction. �

P r o o f . [Proof of Theorem 4.1] Let M be the matroid associated to Γ. Let F be a
finite field with |F| ≥ n. Let s ∈ F be the secret to be shared. For each p ∈ P , we
construct a secret sharing scheme Σp to share s. The resulting secret sharing scheme Σ
consists on sharing independently s by means of every Σp.

If {p} ∈ Γ, just send s to p. In this case Γp = Γ′p = Γ̃p = {∅}. If {p} /∈ Γ, consider
an access structure Γ′p satisfying that it is a port of a matroid of rank 2, and

min Γp ⊆ min Γ′p ⊆ min Γp ∪min Γ̃p. (4)

It exists by Lemma 4.2. By Corollary 3.6, Γ′p admits an ideal linear secret sharing scheme
Σp on P \ {p}. Send a random element r ∈ F to p and share r + s with the scheme Σp

among P \ {p}.
The resulting scheme Σ has information ratio at most n and has access structure

cl({A ∪ {p} : A ∈ min Γ′p for some p ∈ P}).

By (1), (2), and (4), the access structure of Σ is Γ. �

4.2. Ports of matroids of higher rank

In this section we extend the result on ports of matroids of rank 3 to ports of matroids
of arbitrary rank. We also see that this result can be extended to the construction of
monotone formulas for monotone Boolean functions.

Theorem 4.3. Let Γ be port of a matroid of rank k. Then it admits a 1-linear secret
sharing scheme of information ratio nk−2.

P r o o f . The result is proved by induction. For k = 2 it is satisfied by Corollary 3.6.
Suppose that it is true for ports of matroid of rank less or equal than k − 1.

Let F be a finite field with |F| ≥ n. Let s ∈ F be the secret to be shared. For every
p ∈ P , consider an access structure Γ′p satisfying that it is a port of a matroid of rank

k−1, and min Γp ⊆ min Γ′p ⊆ min Γp∪min Γ̃p. It exists by Lemma 4.2. By the induction
hypothesis, Γ′p admits a linear secret sharing scheme Σp on P \ {p} with information

ratio nk−3. Using the construction provided in the proof of Theorem 4.1, we construct
a secret sharing scheme for Γ whose information ratio is at most n · nk−3 = nk−2. �

The scheme in Theorem 4.3 is only useful when k is small. The DNF construction
from [10] has information ratio at most

(
n−1
k−1
)
. Observe that if k = lnn

ln lnn , then(
n

k

)
<
nkek

kk
=

nke
lnn

ln lnn

e
lnn

ln lnn ln( lnn
ln lnn )

=
nkn

1
ln lnn

n1−
ln ln lnn
ln lnn

= nk−1+o(1),
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and so
(
n−1
k−1
)

= nk−2+o(1). Therefore, our construction is useful if k is constant or

k � lnn
ln lnn .

Corollary 4.4. Let Γ be a port of a matroid of rank n − k for some k > 1. Then it
admits a 1-linear secret sharing of information ratio at most nk−1.

P r o o f . Assume that Γ is the p0-port of a matroid M = (Q, r). Since M has rank
n − k, M∗ has rank n + 1 − (n − k) = k + 1. By Theorem 4.1, the p0-port of M∗
admits a linear secret sharing scheme with information ratio nk−1. The result holds by
Theorem 2.6 and Lemma 3.3. �

The recursive construction for secret sharing schemes can be also applied to monotone
formulas for monotone Boolean functions in a straightforward manner. See [38] for an
introduction to this area.

Definition 4.5. Let M = (Q, r) be a matroid. A monotone Boolean function f :
{0, 1}P → {0, 1} is a p0-port of M if for every A ⊆ P ,

A is a minterm of f if and only if A ∪ {p0} is a circuit of M.

Corollary 4.6. Let f be a monotone Boolean function that is a port of a matroid of
rank k. Then there is a AND-OR formula for f of size O(nk−1 log n).

P r o o f . By Corollary 3.6, the minterms of monotone Boolean functions determined by
matroids of rank 2 define mulipartite graphs. A multipartite graph on a set of n points
can be described by an AND-OR formula of size O(n log n). The result holds by using
the recursive argument in Theorem 4.3. �

5. LOWER BOUNDS FOR LINEAR SECRET SHARING SCHEMES

In this section we show a lower bound on the size of linear secret sharing schemes for
matroid ports.

5.1. Number of matroid ports

First, we approximate the number of matroid ports in Proposition 5.1. This number
is approximated by using the latest results on the number of matroids [3] and on the
number or connected matroids [32].

For every n > 1, let m(n) be the number of matroids on a ground set on n elements,
and let mp(n) be the number of matroid ports on a set of n participants.

Proposition 5.1.
log mp(n) = Θ(2n/n3/2).

In order to prove this result we need some results on matroid theory that are presented
below. As discussed in Section 3, the number of connected access structures on P that
are matroid ports is equal to the number of labeled p0-ports of connected matroids on
Q. It is conjectured that almost every matroid is connected [32]. The best result in this
direction is the following theorem.



912 O. FARRÀS

Theorem 5.2. (Mayhew et al. [32]) The proportion of n-element matroids that are
connected is asymptotically at least 1/2.

In the following theorem, we present bounds on m(n). Both bounds were presented
by Bansal et al. [3], and the lower bound combines the results of Knuth [24] and Graham
and Sloane [20].

Theorem 5.3. (Bansal et al. [3])

1

n

(
n

bn/2c

)
≤ log m(n) ≤ 2

n

(
n

bn/2c

)
(1 + o(1)).

P r o o f . [Proof of Proposition 5.1] Every matroid defines a matroid port, and so
mp(n) ≤ m(n + 1). Moreover, by Theorem 5.2, for a large enough n we have mp(n) >
1
2m(n + 1). Now we use Theorem 5.3 to bound log mp(n). The proof is completed by
considering the approximation of the binomial coefficients

(
n
bn/2c

)
= Θ(2n/

√
n). �

Using the approximation of the number of matroid ports presented above, we have
some information about the proportion of matroid ports among the family of access
structures, and the total information ratio of linear schemes for matroid ports.

Let a(n) be the number of access structures on a set of n elements for every n > 1. It
is known that a(n) is equal to the nth Dedekind number, and it satisfies a(n) ∼

(
n
bn/2c

)
(see [23], for example). Hence,

log a(n)

log mp(n)
= Θ(n).

5.2. A lower bound

Next, we provide an asymptotic lower bound on the total information ratio of linear
secret sharing schemes for matroid ports. The proof of this bound follows the techniques
used by Babai, Gál and Wigderson [2] for proving lower bounds on the size of span
programs for general access structures.

Theorem 5.4. For every finite field Fq and integer ` > 0 and for every large enough
n, there exists a matroid port that requires (Fq, `)-linear secret sharing schemes of total
information ratio

Ω

(
2n/2

n3/4`
√

log q

)
.

P r o o f . For any t ≥ n, we define L(n, t, q, `) as the family of access structures on [n]
that admit (Fq, `)-linear secret sharing schemes with total information ratio at most t.
We also define A(`, t, q) as the family of `(t+ 1)× `t matrices over Fq in which the first
` rows are the first ` rows of the identity matrix.

We can assume that a (Fq, `)-linear secret sharing scheme with total information ratio
t′ determines a (t′ + 1)` × k matrix M over Fq, for some k ≤ t′`, in which the first `
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rows are the first ` rows of the identity matrix (see [4] for more details). By adding zero
rows and columns to M , we can assume that M is in A(`, t, q) for any t ≥ t′. Hence,

|L(n, t, q, `)| ≤ |A(`, t, q)| = q`
2t2 .

By Proposition 5.1, log mp(n) = Ω(2n/n3/2). Hence, there exists some c ∈ R+ for
which the parameter t = c2n/2/(n3/4`

√
log q) satisfies |L(n, t, q, `)| < mp(n) for a large

enough n. It implies that there exist matroid ports that require (Fq, `)-linear secret
sharing schemes with total information ratio greater than t. �
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[1] B. Applebaum, A. Beimel, O. Farràs, O. Nir, and N. Peter: Secret-Sharing Schemes for
General and Uniform Access Structures. In: Advances in Cryptology – EUROCRYPT
2019, Lect. Notes Comput. Sci. 11478 (2019), Springer, pp. 441-471. DOI:10.1007/978-3-
030-17659-4 15

[2] L. Babai, A. Gál, and A. Wigderson: Superpolynomial lower bounds for monotone span
programs. Combinatorica 19 (1999), 301–319. DOI:10.1007/s004930050058

[3] N. Bansal, R. A. Pendavingh, and J. G. van der Pol: On the number of matroids. Combi-
natorica 49 (2013), 675–694. DOI:10.1007/s00493-014-3029-z

[4] A. Beimel: Secret-sharing schemes: A survey. In: IWCC 2011, Lect. Notes Comput. Sci.
6639 (2019), Springer, pp. 11–46. DOI:10.1007/978-3-642-20901-7 2
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nique in the search for lower bounds in secret sharing. In: Advances in Cryptology —
Eurocrypt 2018, volume 10820 Lecture Notes in Comput. Sci. 10820 (2018), Springer,
pp. 597–621. DOI:10.1007/978-3-319-78381-9 22
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