Kybernetika 56 no. 4, 810-820, 2020

Robust PI-D controller design for descriptor systems using regional pole placement and/or $H_2$ performance

Vojtech Veselý and Ladislav KörösiDOI: 10.14736/kyb-2020-4-0810

Abstract:

The paper deals with the problem of obtaining a robust PI-D controller design procedure for linear time invariant descriptor uncertain polytopic systems using the regional pole placement and/or $H_2$ criterion approach in the form of a quadratic cost function with the state, derivative state and plant input (QSR). In the frame of Lyapunov Linear Matrix Inequality (LMI) regional pole placement approach and/or $H_2$ quadratic cost function based on Bellman-Lyapunov equation, the designed novel design procedure guarantees the robust properties of closed-loop system with parameter dependent quadratic stability/quadratic stability. In the obtained design procedure the designer could use controller with different structures such as P, PI, PID, PI-D. For the PI-D's D-part of controller feedback the designer could choose any available output/state derivative variables of descriptor systems. Obtained design procedure is in the form of Bilinear Matrix Inequality (BMI). The effectiveness of the obtained results is demonstrated on two examples.

Keywords:

pole placement, output feedback, descriptor system, robust PI-D controller, state derivative feedback

Classification:

93B51, 93B52, 93B55, 93B60

References:

  1. G. J. Bara: Robust analysis and control of parameter-dependent uncertaintain descriptor systems. Systems Control Lett. 60 (2011), 356-364.   DOI:10.1016/j.sysconle.2011.03.001
  2. M. Darouch, F. Ameto and M. Alma: Functional observers design for descriptor systems via LMI: Continuous and Discrete-time cases. Automatika 86 (2017), 216-219.   DOI:10.1016/j.automatica.2017.08.016
  3. D. Debeljkovic, N. Visnjic and M. Pjescic: The stability of linear continuous singular systems in the sense of Lyapunov: An overview. Sci. Techn. Rev. LVII (2007), 1, 51-64.   CrossRef
  4. M. Fu: Pole Placement via static output feedback is NP-hard. IEEE Trans Automat. Control 49 (2004), 5, 855-857.   DOI:10.1109/tac.2004.828311
  5. L. Van Hien, L. H. Vu and H. Trinh: Stability of two dimmensional descriptor systems with generalized directional delays. Systems Control Lett. 112 (2018), 42-50.   DOI:10.1016/j.sysconle.2017.12.003
  6. M. Chadli, J. Daafouz and M. Darouch: Stabilization of Singular LPV systems. In: Proc. of 17th IFAC World Congress 2008, pp. 9999-10002.   DOI:10.3182/20080706-5-kr-1001.01692
  7. C. Chen and Y. Liu: Lyapunov stability analysis of linear singular dynamical systems. In: Proc. Inter. Conf. on Intelligent Processing Systems, Beijing, 1997.   DOI:10.1109/icips.1997.672862
  8. M. Chilali and P. Gahinet: $H_{\infty}$ design with pole placement constraints: LMI approach. IEEE Trans. Automat. Control 41, 1996, 3, 358-365.   DOI:10.1109/9.486637
  9. M. Chilali, P. Gahinet and P. Apkarian: Robust pole placement in LMI regions. IEEE Trans. Automat. Control 44 (1999), 12, 2257-2269.   DOI:10.1109/9.811208
  10. X. Ji, H. Su and J. Chu: An LMI approach to robust $H_{\infty}$ control for uncertain singular time-delay systems. J. Control Theory Appl. 4 (2006), 361-366.   DOI:10.1007/s11768-006-5212-2
  11. H. Kimura: A futher result on the problem of pole assignment by output feedback. IEEE Trans. Automa. Control 22 (1977), 3, 458-467.   DOI:10.1109/tac.1977.1101520
  12. D. Krokavec and A. Filasova: LMI constraints on system eigenvalues placement in dynamic output control design. IEEE Conference on Control Appllications, 2015.   DOI:10.1109/cca.2015.7320862
  13. V. Kucera and C. E. Souza: A necessary and sufficient condition for output feedback stabilizability. Automatika 31 (1995), 9, 1357-1359.   DOI:10.1016/0005-1098(95)00048-2
  14. V. M. Kuncevic and M. M. Lycak: Control Systems Design Using Lyapunov Function Approach (In Russian). Nauka, Moscow 1977.   CrossRef
  15. Ch. Lin, B. Chen, P. Shi and J. P. Yu: Necessary and sufficient conditions of observer-based stabilization for a class of fractional-order descriptor systems. Systems Control Lett. 112 (2018), 31-35.   DOI:10.1016/j.sysconle.2017.12.004
  16. Ch. Lin, J. L. Wang, G. H. Yang and C. B. Soh: Robust C-controllability and/or C-observability for uncertain desriptor systems with interval perturbations in all matrices. Trans. Automat. Control 44 (1999), 9, 1768-1773.   DOI:10.1109/9.788550
  17. I. Masabuchi, Y. Kamitane, A. Ohara and N. Suda: $H_{\infty}$ control for descriptive systems: A matrix inequalities approach. Automatika 33 (1997), 4, 669-673.   DOI:10.1016/s0005-1098(96)00193-8
  18. D. Peaucelle, D. Arzelier, D. Bachelier and J. Bernussou: A new robust D-stability condition for real convex polytopic uncertainty. Systems Control Lett. 40 (2000), 21-30.   DOI:10.1016/s0167-6911(99)00119-x
  19. M. S. Silva and T. P. deLima: Looking for nonnegative solutions of a Leontiev dynamic model. Linear Algebra 364 (2003), 281-316.   DOI:10.1016/s0024-3795(02)00569-4
  20. K. Takaba, N. Moriharu and T. Katayama: A generalized Lyapunov Theorem for descriptive system. Systems Control Lett. 24 (1995), 49-51.   DOI:10.1016/0167-6911(94)00041-s
  21. V. Veselý and L. Körösi: Robust PI-D controller design for uncertain linear polytopic systems using LMI regions and $H_2$ performance. IEEE Trans. Industry Appl. 55 (2019), 5, 5353-5359.   DOI:10.1109/tia.2019.2921282
  22. V. Veselý and D. Rosinová: Robust PID-PSD controller design: BMI approach. Asian J. Control 5 (2013), 2, 469-478.   CrossRef
  23. S. Xu, P. Van Dooren, R. Stefan and J. Lam: Robust stability and stabilization for singular systems with state delay and parameter uncertainty. IEEE Trans. Automat. Control (2002), 1-12.   DOI:10.1109/tac.2002.800651