Kybernetika 56 no. 4, 617-645, 2020

Existence and simulation of Gibbs-Delaunay-Laguerre tessellations

Daniel Jahn and Filip SeitlDOI: 10.14736/kyb-2020-4-0617

Abstract:

Three-dimensional Laguerre tessellation models became quite popular in many areas of physics and biology. They are generated by locally finite configurations of marked points. Randomness is included by assuming that the set of generators is formed by a marked point process. The present paper focuses on 3D marked Gibbs point processes of generators which enable us to specify the desired geometry of the Laguerre tessellation. In order to prove the existence of a stationary Gibbs measure using a general approach of Dereudre, Drouilhet and Georgii \cite{DDG12}, the geometry of Laguerre tessellations and their duals Laguerre Delaunay tetrahedrizations is examined in detail. Since it is difficult to treat the models analytically, their simulations are carried out by Markov chain Monte Carlo techniques.

Keywords:

Laguerre-Delauay tetrahedrization, stationary Gibbs measure, Gibbs-Laguerre tessellation, MCMC simulation

Classification:

60K35, 60G55

References:

  1. S. N. Chiu, D. Stoyan, W. S. Kendall and J. Mecke: Stochastic Geometry and its Applications. J. Willey and Sons, Chichester 2013.   DOI:10.1002/9781118658222
  2. D. Dereudre: Introduction to the theory of Gibbs point processes. In: Chapter in Stochastic Geometry, pp. 181-229, Springer, Cham 2019.   DOI:10.1007/978-3-030-13547-8\_5
  3. D. Dereudre, R. Drouilhet and H. O. Georgii: Existence of Gibbsian point processes with geometry-dependent interactions. Probab. Theory Rel. 153 (2012), 3, 643-670.   DOI:10.1007/s00440-011-0356-5
  4. D. Dereudre and F. Lavancier: Practical simulation and estimation for Gibbs Delaunay-Voronoi tessellations with geometric hardcore interaction. Comput. Stat. Data An. 55 (2011), 1, 498-519.   DOI:10.1016/j.csda.2010.05.018
  5. Fropuff: The vertex configuration of a tetrahedral-octahedral honeycomb.    CrossRef
  6. P. Hadamard: Résolution d'une question relative aux déterminants. Bull. Sci. Math. 17 (1893), 3, 240-246.   CrossRef
  7. C. Lautensack and S. Zuyev: Random Laguerre tessellations. Adv. Appl. Probab. 40 (2008), 3, 630-650.   DOI:10.1017/s000186780000272x
  8. J. Møller and R. P. Waagepetersen: Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton 2003.   DOI:10.1201/9780203496930
  9. A. Okabe, B. Boots, K. Sugihara and S.N. Chiu: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. J. Willey and Sons, Chichester 2009.   DOI:10.2307/2687299
  10. C. Preston: Random Fields. Springer, Berlin 1976.   DOI:10.1007/bfb0080563
  11. R. Quey and L. Renversade: Optimal polyhedral description of 3{D} polycrystals: Method and application to statistical and synchrotron {X}-ray diffraction data. Comput. Method Appl. M 330 (2018), 308-333.   DOI:10.1016/j.cma.2017.10.029
  12. C. Rycroft: Voro++: A three-dimensional Voronoi cell library in C++. Chaos 19 (2009), 041111.   DOI:10.1063/1.3215722
  13. F. Seitl, L. Petrich, J. Staněk, C. E. Krill III, V. Schmidt and V. Beneš: Exploration of Gibbs-Laguerre Tessellations for Three-Dimensional Stochastic Modeling. Methodol. Comput. Appl. Probab. (2020).   DOI:10.1007/s11009-019-09757-x
  14. D. M. Y. Sommerville: An Introduction to the Geometry of N Dimensions. Methuen and Co, London 1929.   CrossRef
  15. P. Stein: A note on the volume of a simplex. Amer. Math. Monthly 73 (1966), 3, 299-301.   DOI:10.2307/2315353
  16. H. Zessin: Point processes in general position. J. Contemp. Math. Anal. 43 (2008), 1, 59-65.   DOI:10.3103/s11957-008-1005-x