Kybernetika 56 no. 3, 543-558, 2020

Delay-dependent stability of linear multi-step methods for linear neutral systems

Guang-Da Hu and Lizhen ShaoDOI: 10.14736/kyb-2020-3-0543

Abstract:

In this paper, we are concerned with numerical methods for linear neutral systems with multiple delays. For delay-dependently stable neutral systems, we ask what conditions must be imposed on linear multi-step methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. Combining with Lagrange interpolation, linear multi-step methods can be applied to the neutral systems. Utilizing the argument principle, a sufficient condition is derived for linear multi-step methods with preserving delay-dependent stability. Numerical examples are given to illustrate the main results.

Keywords:

delay-dependent stability, Lagrange interpolation, argument principle, neutral systems with multiple delays, linear multi-step method

Classification:

65L05, 65L07, 65L20

References:

  1. A. Y. Aleksandrov, G. D. Hu and A. P. Zhabko: Delay-independent stability conditions for some classes of nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 2209-2214.   DOI:10.1109/tac.2014.2299012
  2. A. Bellen and M. Zennaro: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford 2003.   DOI:10.1093/acprof:oso/9780198506546.001.0001
  3. J. W. Brown and R. V. Churchill: Complex Variables and Applications. McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004.   CrossRef
  4. E. Fridman: Introduction to Time-Delay Systems: Analysis and Control. Birkhäuser, New York 2014.   DOI:10.1007/978-3-319-09393-2
  5. J. K. Hale and S. M. Verduyn Lunel: Strong stabilization of neutral functional differential equations. IMA J. Math. Control Inform. 19 (2002), 5-23.   DOI:10.1093/imamci/19.1\_and\_2.5
  6. Q. L. Han: Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays. IMA J. Math. Control Inform. 20 (2003), 371-386.   DOI:10.1093/imamci/20.4.371
  7. G. D. Hu: Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays. Kybernetika 54 (2018), 718-735.   DOI:10.14736/kyb-2018-4-0718
  8. G. D. Hu and B. Cahlon: Estimations on numerically stable step-size for neutral delay differential systems with multiple delays. J. Compt. Appl. Math. 102 (1999), 221-234.   DOI:10.1016/s0377-0427(98)00215-5
  9. G. D. Hu and M. Liu: Stability criteria of linear neutral systems with multiple delays. IEEE Trans. Automat. Control 52 (2007), 720-724.   DOI:10.1109/tac.2007.894539
  10. C. Huang and S. Vandewalle: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Scientific Computing 25 (2004), 1608-1632.   DOI:10.1137/s1064827502409717
  11. L. W. Johnson, R. Dean Riess and J. T. Arnold: Introduction to Linear Algebra. Prentice-Hall, Englewood Cliffs 2000.   CrossRef
  12. E. I. Jury: Theory and Application of $z$-Transform Method. John Wiley and Sons, New York 1964.   CrossRef
  13. A. V. Kim and A. V. Ivanov: Multistep numerical methods for fuctional difefrential equations. Math. Comput. Simul. 45 (1998), 377-384.   DOI:10.1016/s0378-4754(97)00117-1
  14. V. B. Kolmanovskii and A. Myshkis: Introduction to Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1999.   DOI:10.1007/978-94-017-1965-0
  15. J. D. Lambert: Numerical Methods for Ordinary Differential Systems. John Wiley and Sons, New York 1999.   CrossRef
  16. P. Lancaster and M. Tismenetsky: The Theory of Matrices with Applications. Academic Press, Orlando 1985.   CrossRef
  17. S. Maset: Instability of Runge-Kutta methods when applied to linear systems of delay differential equations. Numer. Math. 90 (2002), 555-562.   DOI:10.1007/s002110100266
  18. I. V. Medvedeva and A. P. Zhabko: Synthesis of Razumikhin and Lyapunov-Krasovskii approaches to stability analysis of time-delay systems. Automatica 51 (2015), 372-377.   DOI:10.1016/j.automatica.2014.10.074
  19. H. Tian and J. Kuang: The stability of the $\theta$-methods in numerical solution of delay differential equations with several delay terms. J. Comput. Appl. Math. 58 (1995), 171-181.   DOI:10.1016/0377-0427(93)e0269-r
  20. T. Vyhlidal and P. Zitek: Modification of Mikhaylov criterion for neutral time-delay systems. IEEE Trans. Automat. Control 54 (2009), 2430-2435.   DOI:10.1109/tac.2009.2029301