Kybernetika 56 no. 2, 278-297, 2020

Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles

Wen-Hai Yu, Hong-Jie Ni, Hui Dong and Dan ZhangDOI: 10.14736/kyb-2020-2-0278


In this paper, the consensus of heterogeneous multi-agent systems (MASs) with uncertain Deny-of-Service (DoS) attack strategies is studied. In our system, all agents are time synchronized and they communicate with each other with a constant sampling period normally. When the system is under attack, all agents use the hold-input mechanism to update the control protocol. By assuming that the attack duration is upper bounded and the occurrence of the attack follows a Markovian jumping process, the closed-loop system in presence of such a kind of random DoS attack is modeled as a Markovian jumping system, and the attack probabilities are allowed to be partially unknown and uncertain. By means of Lyapunov stability theory and Markovian jumping system approach, sufficient conditions are proposed such that the output consensus can be achieved, and the controller gains are determined by solving some matrix inequalities. Finally, a simulation study on the mobile stage vehicles is performed, showing the effectiveness of main results.


heterogeneous multi-agent systems (MASs), Markovian jumping system, Deny-of-Service (DoS) attack, output feedback control


93D05, 93C57, 60J05


  1. S. Rockel, D. Klimentjew and J. Zhang: A multi-robot platform for mobile robots: A novel evaluation and development approach with multi-agent technology. In: 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 470-477.   DOI:10.1109/mfi.2012.6343020
  2. F. Guo, Q. Xu, C. Wen, L. Wang and P. Wang: Distributed secondary control for power allocation and voltage restoration in islanded DC microgrids. IEEE Trans. Sustainable Energy 9 (2018), 4, 1857-1869.   DOI:10.1109/tste.2018.2816944
  3. Y. Zheng, S. Li, K. Li and W. Ren: Platooning of connected vehicles with undirected topologies: Robustness analysis and distributed H-infinity controller synthesis. IEEE Trans. Intell. Transport. Systems 19 (2017), 5, 1353-1364.   DOI:10.1109/tits.2017.2726038
  4. Y. Qiu and L. Xiang: Distributed adaptive coordinated tracking for coupled non-holonomic mobile robots. IET Control Theory Appl. 8 (2014), 18, 2336-2345.   DOI:10.1049/iet-cta.2014.0099
  5. N. Zhou, Y. Xia, M. Fu and Y. Li: Distributed cooperative control design for finite-time attitude synchronisation of rigid spacecraft. IET Control Theory Appl. 9 (2015), 10, 1561-1570.   DOI:10.1049/iet-cta.2014.0878
  6. D. Zhang, P. Shi, W. Zhang and L. Yu: Energy-efficient distributed filtering in sensor networks: A unified switched system approach. IEEE Trans. Cybernet. 47 (2016), 7, 1618-1629.   DOI:10.1109/tcyb.2016.2553043
  7. P. Wieland, R. Sepulchre and F. Allgöwer: An internal model principle is necessary and sufficient for linear output synchronization. Automatica 47 (2011), 5, 1068-1074.   DOI:10.1016/j.automatica.2011.01.081
  8. G. Wen, C. Chen, Y. Liu and Z. Liu: Neural network-based adaptive leader-following consensus control for a class of nonlinear multiagent state-delay systems. IEEE Trans. Cybernet. 47 (2016), 8, 2151-2160.   DOI:10.1109/tcyb.2016.2608499
  9. W. Hu and C. Yang: Consensus of linear multi-agent systems by distributed dynamic event-triggered control. In: 2017 International Workshop on Complex Systems and Networks (IWCSN), pp. 284-289.   DOI:10.1109/iwcsn.2017.8276540
  10. X. Ge and Q. Han: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE Trans. Cybernet. 47 (2016), 8, 1807-1819.   DOI:10.1109/tcyb.2016.2570860
  11. B. Ning, Q. Han, Z. Zuo, J. Jin and J. Zheng: Collective behaviors of mobile robots beyond the nearest neighbor rules with switching topology. IEEE Transactions on Cybernetics 48 (2018), 5, 1577-1590.   DOI:10.1109/tcyb.2017.2708321
  12. Z. Zuo, Q. Han, B. Ning, X. Ge and X. Zhang: An overview of recent advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334.   DOI:10.1109/tii.2018.2817248
  13. Y. Zheng, J. Ma and L. Wang: Consensus of hybrid multi-agent systems. IEEE Trans. Neural Networks Learning Systems 29 (2017), 4, 1359-1365.   DOI:10.1109/tits.2017.2726038
  14. C. Li and G. Liu: Data-driven leader-follower output synchronization for networked non-linear multi-agent systems with switching topology and time-varying delays. J. Systems Sci. Complex. 31 (2018), 1, 87-102.   DOI:10.1007/s11424-018-7269-7
  15. H. Wai, Z. Yang, Z. Wang and M. Hong: Multi-agent reinforcement learning via double averaging primal-dual optimization. In: Advances in Neural Information Processing Systems (2018), pp. 9649-9660.   CrossRef
  16. H. Hashim, S. El-Ferik and F. Lewis: Neuro-adaptive cooperative tracking control with prescribed performance of unknown higher-order nonlinear multi-agent systems. Int. J. Control 92 (2019), 2, 445-460.   DOI:10.1080/00207179.2017.1359422
  17. G. Alfonso, D. Fernando, M. Mohd, O. Sigeru and C. Juan: Multi-agent systems applications in energy optimization problems: A state-of-the-art review. Energies 11 (2018), 8, 1928.   DOI:10.3390/en11081928
  18. H. Jia and J. Zhao: Cooperative output regulation of heterogeneous multiagent systems based on event-triggered control with fixed and switching topologies. Int. J. Robust Nonlinear Control 28 (2018), 3, 838-858.   DOI:10.1002/rnc.3904
  19. L. Shi, J. Shao, M. Cao and H. Xia: Asynchronous group consensus for discrete-time heterogeneous multi-agent systems under dynamically changing interaction topologies. Inform. Sci. 463 (2018), 282-293.   DOI:10.1016/j.ins.2018.06.044
  20. D. Zhang, Z. Xu, G. Feng and H. Li: Asynchronous resilient output consensus of switched heterogeneous linear multivehicle systems with communication delay. IEEE/ASME Transactions on Mechatronics 24 (2019), 6, 2627-2640.   DOI:10.1109/tmech.2019.2932322
  21. D. Zhang, P. Shi and L. Yu: Containment Control of Linear Multiagent Systems with Aperiodic Sampling and Measurement Size Reduction. IEEE Trans. Neural Networks Learning Systems 29 (2018), 10, 5020-5029.   DOI:10.1109/tnnls.2017.2784365
  22. Z. Feng, G. Hu and G. Wen: Distributed consensus tracking for multi-agent systems under two types of attacks. Int. J. Robust Nonlinear Control 26 (2016), 5, 896-918.   DOI:10.1002/rnc.3342
  23. D. Zhang and G. Feng: A new switched system approach to leader-follower consensus of heterogeneous linear multiagent systems with DoS attack.    CrossRef
  24. Z. Feng and G. Hu: Distributed secure average consensus for linear multi-agent systems under dos attacks. In: 2017 American Control Conference (ACC), pp. 2261-2266.   DOI:10.23919/acc.2017.7963289
  25. Z. Liu, Z. Guan, X. Shen and G. Feng: Consensus of multi-agent networks with aperiodic sampled communication via impulsive algorithms using position-only measurements. IEEE Trans. Automat. Control 57 (2012), 10, 2639-2643.   DOI:10.1109/tac.2012.2214451
  26. X. Ge, Q. Han and X. Zhang: Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays. IEEE Trans. Industr. Electron. 65 (2017), 4, 3417-3426.   DOI:10.1109/tie.2017.2752148
  27. H. Liu, L. Cheng, M. Tan and Z. Hou: Containment control of continuous-time linear multi-agent systems with aperiodic sampling. Automatica 57 (2015), 78-84.   DOI:10.1016/j.automatica.2015.04.005
  28. D. Zhang, P. Shi, Q. Wang and L. Yu: Analysis and synthesis of networked control systems: A survey of recent advances and challenges. ISA Trans. 66 (2017), 376-392.   DOI:10.1016/j.isatra.2016.09.026
  29. D. Zhang, Z. Xu, D. Srinivasan and L. Yu: Leader-follower consensus of multiagent systems with energy constraints: A Markovian system approach. IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1727-1736.   DOI:10.1109/tsmc.2017.2677471
  30. H. Ni, Z. Xu, D. Zhang and L. Yu: Output feedback control of heterogeneous multi-agent systems with stochastic sampled-data. 2017 Chinese Automation Congress (CAC) (2017), 2164-2169.   DOI:10.1109/cac.2017.8243131
  31. H. Ni, Z. Xu, J. Cheng and D. Zhang: Robust Stochastic Sampled-data-based Output Consensus of Heterogeneous Multi-agent Systems Subject to Random DoS Attack: A Markovian Jumping System Approach. Int. J. Control Automat. Systems 17 (2019), 7, 1687-1698.   DOI:10.1007/s12555-018-0658-9
  32. D. Zhang, L. Liu and G. Feng: Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and DoS attack. IEEE Trans. Cybernet. 49 (2019), 4, 1501-1511.   DOI:10.1109/tcyb.2018.2806387
  33. J. Cheng, B. Wang, J. Park and W. Kang: Sampled-data reliable control for T-S fuzzy semi-Markovian jump system and its application to single-link robot arm mode. IET Control Theory Appl. 11 (2017), 12, 1904-1912.   DOI:10.1049/iet-cta.2016.1462
  34. H. Shen, M. Chen, Z. Wu, J. Cao and J. Park: Reliable event-triggered asynchronous passive control for semi-Markov jump fuzzy systems and its application. IEEE Trans. Fuzzy Systems (2019).   DOI:10.1109/tfuzz.2019.2921264
  35. J. Cheng, J. Park, J. Cao and W. Qi: Hidden Markov model-based nonfragile state estimation of switched neural network with probabilistic quantized outputs. IEEE Trans. Cybernet. (2019), 1-10.   DOI:10.1109/tcyb.2019.2909748
  36. D. Zhang, Y. P. Shen, S. Q. Zhou, X. W. Dong and L. Yu: Distributed secure platoon control of connected vehicles subject to DoS attack: Theory and application. IEEE Trans. Systems Man Cybernet.: Systems (2020).   DOI:10.1109/tsmc.2020.2968606
  37. Z. A. Biron, S. Dey and P. Pisu: Real-time detection and estimationof denial of service attack in connected vehicle systems. IEEE Trans. Intell. Transport. Systems 19 (2018), 12, 3893-3902.   DOI:10.1109/tits.2018.2791484
  38. Z. Feng, G. Wen and G. Hu: Distributed secure coordinated control for multiagent systems under strategic attacks. IEEE Trans. Cybernet. 47 (2017), 5, 1273-1284.   DOI:10.1109/tcyb.2016.2544062
  39. Q. Jiao, H. Modares, F. Lewis, S. Xu and L. Xie: Distributed L2-gain output-feedback control of homogeneous and heterogeneous systems. Automatica 71 (2016), 361-368.   DOI:10.1016/j.automatica.2016.04.025
  40. Y. Zhao, L. Zhang, S. Shen and H. Gao: Robust stability criterion for discrete-time uncertain Markovian jumping neural networks with defective statistics of modes transitions. IEEE Trans. Neural Networks 22 (2010), 1, 164-170.   DOI:10.1109/tnn.2010.2093151
  41. Y. Su, L. Xu, X. Wang and D. Xu: Event-based cooperative global practical output regulation of multi-agent systems with nonlinear leader. Automatica 107 (2019), 600-604.   DOI:10.1016/j.automatica.2019.06.008
  42. C. Peng, J. Zhang and Q. Han: Consensus of multiagent systems with nonlinear dynamics using an integrated sampled-data-based event-triggered communication scheme. IEEE Trans. Systems Man Cybernet.: Systems 49 (2018), 3, 589-599.   DOI:10.1109/tsmc.2018.2814572
  43. Z. Wu, Y. Xu, Y. Pan, H. Su and Y. Tang: Event-triggered control for consensus problem in multi-agent systems with quantized relative state measurements and external disturbance. IEEE Trans. Circuits Systems I: Regular Papers 65 (2018), 7, 2232-2242.   DOI:10.1109/tcsi.2017.2777504