Kybernetika 56 no. 2, 239-260, 2020

Modelling and optimal control of networked systems with stochastic communication protocols

Chaoqun Zhu, Bin Yang and Xiang ZhuDOI: 10.14736/kyb-2020-2-0239


This paper is concerned with the finite and infinite horizon optimal control issue for a class of networked control systems with stochastic communication protocols. Due to the limitation of networked bandwidth, only the limited number of sensors and actuators are allowed to get access to network mediums according to stochastic access protocols. A discrete-time Markov chain with a known transition probability matrix is employed to describe the scheduling behaviors of the stochastic access protocols, and the networked systems are modeled as a Markov jump system based on the augmenting technique. In such a framework, both the approaches of stochastic analysis and dynamic programming are utilized to derive the optimal control sequences satisfying the quadratic performance index. Moreover, the optimal controller gains are characterized by solving the solutions to coupled algebraic Riccati equations. Finally, a numerical example is provided to demonstrate the correctness and effectiveness of the proposed results.


optimal control, stochastic communication protocol, networked control systems, markov chain


93C05, 93E20


  1. J. P. Hespanha, P. Naghshtabrizi and Y. Xu: A survey of recent results in networked control systems. Proc. IEEE 95 (2007), 138-162.   DOI:10.1109/JPROC.2006.887288
  2. X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue and C. Peng: Networked control systems: A survey of trends and techniques. IEEE/CAA J. Automat. Sinica (2019).   DOI:10.1109/JAS.2019.1911651
  3. D. Ding, Q.-L. Han, Z. Wang and X. Ge: A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 2483-2499.   DOI:10.1109/TII.2019.2905295
  4. L. Ding, Q.-L. Han and X.-M. Zhang: Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism. IEEE Trans. Industr. Inform. 15 (2019), 3910-3922.   DOI:10.1109/TII.2018.2884494
  5. S. Shu and F. Lin: Deterministic networked control of discrete event systems with nondeterministic communication delays. IEEE Trans. Automat. Control 62 (2017), 190-205.   DOI:10.1109/TAC.2016.2553959
  6. X. Ge, Q.-L. Han, X.-M. Zhang, L. Ding and F. Yang: Distributed event-triggered estimation over sensor networks: A survey. IEEE Trans. Cybernet. (2019).   DOI:10.1109/TCYB.2019.2917179
  7. H. Song, S.-C. Chen and and Y. Yam: Sliding mode control for discrete-time systems with markovian packet dropouts. IEEE Trans. Cybernet. 47 (2017), 3669-3679.   DOI:10.1109/TCYB.2016.2577340
  8. K. Okano, M. Wakaiki, G. Yang and J. P. Hespanha: Stabilization of networked control systems under clock offsets and quantization. IEEE Trans. Automat. Control 63 (2018), 1708-1723.   DOI:10.1109/TAC.2017.2753938
  9. L. Ding, Q.-L. Han, X. Ge and X.-M. Zhang: An overview of recent advances in event-triggered consensus of multi-agent systems. IEEE Trans. Cybernet. 48 (2018), 1110-1123.   DOI:10.1109/TCYB.2017.2771560
  10. Q.-L. Han, Y. Liu and F. Yang: Optimal communication network-based ${{\rm{H}}_\infty }$ quantized control with packet dropouts for a class of discrete-time neural networks with distributed time delay. IEEE Trans. Neural Networks Learning Syst. 27 (2016), 426-434.   DOI:10.1109/TNNLS.2015.2411290
  11. B. Xue, N. Li, S. Li and Q. Zhu: Moving horizon scheduling for networked control systems with communication constraints. IEEE Trans. Industr. Electron. 60 (2013), 3318-3327.   DOI:10.1109/TIE.2012.2200219
  12. K. Liu, E. Fridman and L. Hetel: Stability and ${{\rm{L}}_2 }$-gain analysis of networked control systems under round-robin scheduling: A time-delay approach. Systems Control Lett. 61 (2012), 666-675.   DOI:10.1016/j.sysconle.2012.03.002
  13. L. Zhang and D. Hristu-Varsakelis: Communication and control co-design for networked control systems. Automatica 42 (2006), 953-958.   DOI:10.1016/j.automatica.2006.01.022
  14. S. Longo, G. Herrmann and P. Barber: Robust scheduling of sampled-data networked control systems. IEEE Trans. Control Systems Technol. 20 (2012), 1613-1621.   DOI:10.1109/TCST.2011.2170172
  15. D. Hristu-Varsakelis and L. Zhang: LQG control of networked control systems with access constraints and delays. Int. J. Control 81 (2008), 1266-1280.   DOI:10.1080/0020717 0701697742
  16. W.-A. Zhang, L. Yu and G. Feng: Optimal linear estimation for networked systems with communication constraints. Automatica 47 (2011), 1992-2000.   DOI:10.1016/j.automatica.2011.05.020
  17. G. C. Walsh, H. Ye and L. G. Bushnell: Stability analysis of networked control systems. IEEE Trans. Control Systems Technol. 10 (2002), 438-446.   DOI:10.1109/87.998034
  18. G. Guo and H. Jin: A switching system approach to actuator assignment with limited channels. Int. J. Robust Nonlinear Control 20 (2010), 140-1426.   DOI:10.1002/rnc.1522
  19. G. Guo: A switching system approach to sensor and actuator assignment for stabilization via limited multi-packet transmitting channels. Int. J. Control 84 (2011), 78-93.   DOI:10.1080/00207179.2010.540715
  20. W.-A. Zhang, L. Yu and G. Feng: Stabilization of linear discrete-time networked control systems via protocol and controller co-design. Int. J. Robust Nonlinear Control 25 (2015), 3072-3085.   DOI:10.1002/rnc.3248
  21. L. Zou, Z. Wang, Q.-L. Han and D. Zhou: Ultimate boundedness control for networked systems with try-once-discard protocol and uniform quantization effects. IEEE Trans. Automat. Control 62 (2017), 6582-6588.   DOI:10.1109/TAC.2017.2713353
  22. G. Guo, Z. Lu and Q.-L. Han: Control with Markov sensors/actuators assignment. IEEE Trans. Automat. Control 57 (2012), 1799-1804.   DOI:10.1109/TAC.2011.2176393
  23. L. Zou, Z. Wang, Q.-L. Han and D. Zhou: Recursive filtering for time-varying systems with random access protocol. IEEE Trans. Automat. Control 64 (2019), 720-727.   DOI:10.1109/TAC.2018.2833154
  24. C. Zhu, G. Guo, B. Yang and Z. Wang: Networked optimal control with random medium access protocol and packet dropouts. Math. Problems Engrg. 2015 (2015), 1-11.   DOI:10.1155/2015/105416
  25. L. Zou, Z. Wang and H. Gao: Observer-based ${{\rm{H}}_\infty }$ control of networked systems with stochastic communication protocol: The finite-horizon case. Automatica 63 (2016), 366-373.   DOI:10.1016/ j.automatica.2015.10.045
  26. J. Zhang, C. Peng, M.-R. Fei and Y.-C. Tian: Output feedback control of networked systems with a stochastic communication protocol. J. Franklin Inst. 354 (2017), 3838-3853.   DOI:10.1016/j.jfranklin.2016.02.009
  27. D. Ding, Z. Wang and Q.-L. Han: Neural-network-based output-feedback control with stochastic communication protocols. Automatica 106 (2019), 221-229.   DOI:10.1016/j.automatica. 2019.04.025
  28. Y. Long, S. Liu and L. Xie: Stochastic channel allocation for networked control systems. IEEE Control Systems Lett. 1 (2017), 176-181.   DOI:10.1109/LCSYS.2017.2712100
  29. M. C. F. Donkers, W. P. M. H. Heemels, D. Bernardini, A. Bemporad and V. Shneer: Stability analysis of stochastic networked control systems. Automatica 48 (2012), 917-925.   DOI:10.1016/j.automatica.2012.02.029
  30. Y. Xu, H. Su, Y.-J. Pan, Z.-G. Wu and W. Xu: Stability analysis of network control systems with round-robin scheduling and packet dropouts. J. Franklin Inst. 350 (2013), 2013-2027.   DOI:10.1016/j.jfranklin.2013.05.024
  31. E. Yaz: Control of randomly varying systems with prescribed degree of stability. IEEE Trans. Automat. Control 33 (1988), 407-410.   DOI:10.1109/9.192203
  32. K. D. Running and N. C. Martins: Optimal preview control of Markovian jump linear systems. IEEE Trans. Automat. Control 54 (2009), 2260-2266.   DOI:10.1109/TAC.2009.2026860
  33. O. L. V. Costa and R. P. Marques: Maximal and stabilizing hermitian solutions for discrete-time coupled algebraic Riccati equations. Math. Control Signals Syst. 12 (1999), 167-195.   DOI:10.1007/PL00009849
  34. F. Yang, Z. Wang, Y. S. Hung and M. Gani: ${{\rm{H}}_\infty }$ control for networked systems with random communication delays. IEEE Trans. Automat. Control 51 (2006), 511-518.   DOI:10.1109/TAC.2005.864207
  35. G. Guo and Z. Lu: Markov actuator assignment for networked control systems. Euroup. J. Control 18 (2012), 323-330.   DOI:10.3166/EJC.18.323-330