Kybernetika 55 no. 4, 690-713, 2019

Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays

Tianwei Zhang and Lijun XuDOI: 10.14736/kyb-2019-4-0690

Abstract:

By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the $2p$th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the moment global exponential stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills and the proof of contradiction. Finally, two examples are given to demonstrate that our results are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the almost periodicity and global exponential stability of the discrete-time stochastic SICNNs.

Keywords:

semi-discrete method, stochastic, Krasnoselskii's fixed point theorem, almost periodicity, global exponential stability

Classification:

39A50, 39A24, 39A30, 92B20

References:

  1. L. Arnold and C. Tudor: Stationary and almost periodic solutions of almost periodic affine stochastic differential equations. Stochastics and Stochast. Reports 64 (1998), 177-193.   DOI:10.1080/17442509808834163
  2. A. Arunkumar, R. Sakthivel, K. Mathiyalagan and J. H. Park: Robust stochastic stability of discrete-time fuzzy Markovian jump neural networks. ISA Transactions 53 (2014), 1006-1014.   DOI:10.1016/j.isatra.2014.05.002
  3. I. Bashkirtseva: Controlling the stochastic sensitivity in thermochemical systems under incomplete information. Kybernetika 54 (2018), 96-109.   DOI:10.14736/kyb-2018-1-0096
  4. P. H. Bezandry and T. Diagana: Almost Periodic Stochastic Processes. Springer, New York 2011.   DOI:10.1007/978-1-4419-9476-9
  5. A. Bouzerdoum and R. B. Pinter: Shunting inhibitory cellular neural networks: derivation and stability analysis. IEEE Trans. Circuits Systems 1 - Fundament. Theory Appl. 40 (1993), 215-221.   DOI:10.1109/81.222804
  6. A. Chen, J. Cao and L. Huang: Almost periodic solution of shunting inhibitory CNNs with delays. Phys. Lett. A 298 (2002), 161-170.   DOI:10.1016/s0375-9601(02)00469-3
  7. A. Y. Dorogovtsev and O. A. Ortega: On the existence of periodic solutions of a stochastic equation in a Hilbert space. Visnik Kiiv. Univ. Ser. Mat. Mekh. 30 (1988), 21-30.   CrossRef
  8. Bo Du, Y. R. Liu and I. A. Abbas: Existence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networks. J. Frank. Inst. 353 (2016), 448-461.   DOI:10.1016/j.jfranklin.2015.11.013
  9. Q. Y. Fan and J. Y. Shao: Positive almost periodic solutions for shunting inhibitory cellular neural networks with time-varying and continuously distributed delays. Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1655-1663.   DOI:10.1016/j.cnsns.2009.06.026
  10. M. F. Hu, J. D. Cao and A. H. Hua: Mean square exponential stability for discrete-time stochastic switched static neural networks with randomly occurring nonlinearities and stochastic delay. Neurocomputing 129 (2014), 476-481.   DOI:10.1016/j.neucom.2013.09.011
  11. S. G. Hu, C. M. Huang and F. K. Wu: Stochastic Differential Equations. Science Press, Beijing 2008.   DOI:10.1142/9789812774798\_0002
  12. S. Hu and J. Wang: Global robust stability of a class of discrete-time interval neural networks. IEEE Trans. Circuits Syst. I Regul. Pap. 53 (2006), 129-138.   DOI:10.1109/tcsi.2005.854288
  13. Z. K. Huang, S. Mohamad and F. Gao: Multi-almost periodicity in semi-discretizations of a general class of neural networks. Math. Computers Simul. 101 (2014), 43-60.   DOI:10.1016/j.matcom.2013.05.017
  14. Z. K. Huang, X. H. Wang and F. Gao: The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks. Physics Lett. A 350 (2006), 182-191.   DOI:10.1016/j.physleta.2005.10.022
  15. Z. K. Huang, X. H. Wang and Y. H. Xia: Exponential attractor of $\kappa$-almost periodic sequence solution of discrete-time bidirectional neural networks. Simul. Modell. Practice Theory 18 (2010), 317-337.   DOI:10.1016/j.simpat.2009.11.007
  16. T. Kawata: Almost Periodic Weakly Stationary Processes, Statistics and Probability: Essays in Honor of C. R. Rao. North-Holland, Amsterdam 1982, pp. 383-396.   CrossRef
  17. J. C. Kuang: Applied Inequalities. Shandong Science and Technology Press, Shandong 2012.   CrossRef
  18. Q. X. Lan, H. W. Niu, Y. M. Liu and H. F. Xu: Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems. Kybernetika 53 (2017), 780-802.   DOI:10.14736/kyb-2017-5-0780
  19. B. Liu and L. Huang: Existence and stability of almost periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays. Phys. Lett. A 349 (2006), 177-186.   DOI:10.1016/j.physleta.2005.09.023
  20. D. Liu, L.J. Wang, Y. N. Pan and H. Y. Ma: Mean square exponential stability for discrete-time stochastic fuzzy neural networks with mixed time-varying delay. Neurocomputing 171 (2016), 1622-1628.   DOI:10.1016/j.neucom.2015.06.045
  21. S. Mohamad: Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks. Physica D 159 (2001), 233-251.   DOI:10.1016/s0167-2789(01)00344-x
  22. S. Mohamad and K. Gopalsamy: Dynamics of a class of discrete-time neural networks and their continuous-time counterparts. Math. Computers Simul. 53 (2000), 1-39.   DOI:10.1016/s0378-4754(00)00168-3
  23. S. Mohamad and K. Gopalsamy: Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Appl. Math. Comput. 135 (2003), 17-38.   DOI:10.1016/s0096-3003(01)00299-5
  24. S. Mohamad and A. G. Naim: Discrete-time analogues of integro-differential equations modelling bidirectional neural networks. J. Comput. Appl. Math. 138 (2002), 1-20.   DOI:10.1016/s0377-0427(01)00366-1
  25. G. Nagamani, S. Ramasamy and P. Balasubramaniam: Robust dissipativity and passivity analysis for discrete-time stochastic neural networks with time-varying delay. Complexity 21 (2014), 47-58.   DOI:10.1002/cplx.21614
  26. Y. Ou, H. Liu, Y. Si and Z. Feng: Stability analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing 73 (2010), 740-748.   DOI:10.1016/j.neucom.2009.10.017
  27. S. Raj, R. Ramachandran, S. Rajendiran and J. D. Cao: Passivity analysis of uncertain stochastic neural network with leakage and distributed delays under impulsive perturbations. Kybernetika 54 (2018), 3-29.   DOI:10.14736/kyb-2018-1-0003
  28. M. Şaylı and E. Yılmaz: Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays. Neural Networks 68 (2015), 1-11.   DOI:10.1016/j.neunet.2015.04.004
  29. D. R. Smart: Fixed Point Theorems. Cambridge University Press, Cambridge 1980.   CrossRef
  30. R. J. Swift: Almost periodic harmonizable processes. Georgian Math. J. 3 (1996), 275-292.   DOI:10.1007/bf02280009
  31. C. Tudor: Almost periodic solutions of affine stochastic evolutions equations. Stochastics and Stochast. Reports 38 (1992), 251-266.   DOI:10.1080/17442509208833758
  32. P. Wang, B. Li and Y. K. Li: Square-mean almost periodic solutions for impulsive stochastic shunting inhibitory cellular neural networks with delays. Neurocomputing 167 (2015), 76-82.   DOI:10.1016/j.neucom.2015.04.089
  33. J. Wang, X. M. Zhang and Q. L. Han: Event-Triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Networks Learning Systems 27 (2016), 77-88.   DOI:10.1109/tnnls.2015.2411734
  34. W. Xiong and J. D. Cao: Global exponential stability of discrete-time Cohen-Grossberg neural networks. Neurocomputing 64 (2005), 433-446.   DOI:10.1016/j.neucom.2004.08.004
  35. L. L. Xiong, J. Cheng, J. D. Cao and Z. X. Liu: Novel inequality with application to improve the stability criterion for dynamical systems with two additive time-varying delays. Applied Math. Comput. 321 (2018), 672-688.   DOI:10.1016/j.amc.2017.11.020
  36. C. J. Xu and P. L. Li: On anti-periodic solutions for neutral shunting inhibitory cellular neural networks with time-varying delays and D operator. Neurocomputing 275 (2018), 377-382.   DOI:10.1016/j.neucom.2017.08.030
  37. L. Yang and Y. K. Li: Periodic solutions for stochastic shunting inhibitory cellular neural networks with distributed delays. Advances Difference Equations 2014 (2014), 1-37.   DOI:10.1186/1687-1847-2014-37
  38. L. G. Yao: Global exponential convergence of neutral type shunting inhibitory cellular neural networks with d operator. Neural Process. Lett. 45 (2017), 401-409.   DOI:10.1007/s11063-016-9529-7
  39. T. W. Zhang: Multiplicity of positive almost periodic solutions in a delayed Hassell-Varleytype predator-prey model with harvesting on prey. Math. Meth. Appl. Sci. 37 (2014), 686-697.   DOI:10.1002/mma.2826
  40. T. W. Zhang: Almost periodic oscillations in a generalized Mackey-Glass model of respiratory dynamics with several delays. Int. J. Biomath. 7 (2014), 1450029 (22 pages).   DOI:10.1002/mma.2826
  41. T. W. Zhang and X. R. Gan: Almost periodic solutions for a discrete fishing model with feedback control and time delays. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 150-163.   DOI:10.1016/j.cnsns.2013.06.019
  42. X. M. Zhang and Q. L. Han: Global asymptotic stability for a class of generalized neural networks with interval time-varying delays. IEEE Trans. Neural Networks 22 (2011), 1180-1192.   DOI:10.1109/tnn.2011.2147331
  43. X. M. Zhang and Q. L. Han: An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 313 (2018), 392-401.   DOI:10.1016/j.neucom.2018.06.038
  44. X. M. Zhang, Q. L. Han and Z. G. Zeng: Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities. IEEE Trans. Cybernet. 48 (2018), 1660-1671.   DOI:10.1109/tcyb.2017.2776283
  45. T. W. Zhang and Y. Z. Liao: Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay. Kybernetika 53 (2017), 612-629.   DOI:10.14736/kyb-2017-4-0612
  46. H. Y. Zhang, Z. P. Qiu and L. L. Xiong: Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump. Neurocomputing 333 (2019), 395-406.   DOI:10.1016/j.neucom.2018.12.028
  47. T. W. Zhang and L. L. Xiong: Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Applied Mathematics Letters 101 (2020), 106072.   DOI:10.1016/j.aml.2019.106072
  48. T. W. Zhang, L. Yang and L. J. Xu: Stage-structured control on a class of predator-prey system in almost periodic environment. International Journal of Control 2019 (2019), in print.   DOI:10.1080/00207179.2018.1513165
  49. Z. Q. Zhang and D. M. Zhou: Existence and global exponential stability of a periodic solution for a discrete-time interval general BAM neural networks. J. Frank. Inst. 347 (2010), 763-780.   DOI:10.1016/j.jfranklin.2010.02.007
  50. H. Zhao, L. Sun and G. Wang: Periodic oscillation of discrete-time bidirectional associative memory neural networks. Neurocomputing 70 (2007), 2924-2930.   DOI:10.1016/j.neucom.2006.11.010