The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function $f$. The relative controllability of the presented semilinear system is discussed. Rothe's fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A~control that steers the semilinear system from an initial complete state to a final state at time $t>0$ is presented. A numerical example is provided to illustrate the obtained theoretical results and a practical example is given to show a possible application of the study.
the Caputo derivative, delays in control, fractional systems, semilinear control systems, Rothe's fixed point theorem, pseudo-transition matrix
93B05, 93C05, 93C10, 34G20