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ON APPLICATION OF ROTHE’S FIXED POINT
THEOREM TO STUDY THE CONTROLLABILITY
OF FRACTIONAL SEMILINEAR SYSTEMS WITH DELAYS

Beata Sikora

The paper presents finite-dimensional dynamical control systems described by semilinear
fractional-order state equations with multiple delays in the control and nonlinear function
f . The relative controllability of the presented semilinear system is discussed. Rothe’s fixed
point theorem is applied to study the controllability of the fractional-order semilinear system.
A control that steers the semilinear system from an initial complete state to a final state at
time t > 0 is presented. A numerical example is provided to illustrate the obtained theoretical
results and a practical example is given to show a possible application of the study.

Keywords: fractional systems, semilinear control systems, Rothe’s fixed point theorem,
delays in control, pseudo-transition matrix, the Caputo derivative

Classification: 93B05, 93C05, 93C10, 34G20

1. INTRODUCTION

The controllability of dynamical systems is one of the most important problems in the
control theory. In general, controllability means that it is possible to steer a control
system from an initial state into a final state with the aid of admissible controls. Many
different controllability definitions have been formulated in literature, which depend on
both a class of control systems and a set of admissible controls. A review of recently
analyzed controllability problems for a wide class of dynamical systems is presented in
[19] and especially for fractional-order systems in [2].

In recent years, the papers and monographs concerning the controllability of dy-
namical control systems have focused on systems defined by fractional-order differential
equations. In many practical applications, fractional-order models have proven to de-
scribe the behavior of real-life processes more accurately. Control systems modeled
by fractional differential equations occur, among others, in mechanical, biological and
chemical problems. Comprehensive discussions of fractional differential equations and
their practical applications can be found, for example, in [15, 25, 26, 29, 30, 31, 34].

The controllability of discrete-time fractional systems is studied in [1, 17, 18, 20, 21],
positive fractional discrete-time systems are discussed in [40], positive fractional lin-
ear systems, both discrete- and continuous-time, are presented in [13] and [14]. Con-
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trollability of continuous time linear fractional systems is studied, among others, in
[3, 6, 9, 32, 41].

In many processes, future states depend on both the present state and past states of
a system. This means that models describing the processes involve delays in state or
in control. If we have delays in the input function, we deal with control systems with
delayed controls. In view of the apparent large number of mathematical models which
describe dynamical systems with delays in control, solving controllability problems for
such systems is of particular importance. Controllability problems for linear continuous-
time fractional systems with delayed control are analyzed in [4, 7, 22, 35, 36, 37, 42].
Semilinear and nonlinear fractional-order systems with delays are discussed, among oth-
ers, in [38] where the Frechet derivative method is applied, in [5, 8] and [27] the Schauder
fixed point theorem is used, in [33] the Schaefer fixed point theorem is considered.

The aim of the paper is to study the controllability of continuous-time fractional-order
semilinear control systems with multiple delays in control. A new relative controllability
criterion for semilinear fractional systems with delays is formulated and proved based on
Rothe’s fixed point theorem. The Rothe fixed point method has been previously used
in [23] for integer-order semilinear systems.

The paper is organized in the following manner. Section 2 recalls some preliminary
definitions, formulas and notations. In Section 3, the mathematical model of the consid-
ered semilinear fractional systems with point delays in control is presented. The formula
for a solution of the discussed system is presented and definitions of the relative control-
lability from given initial conditions, local relative controllability and (global) relative
controllability of the system are formulated. Section 4 contains the main result of the
paper – a criterion of relative controllability for the semilinear fractional systems with
delays. The proof of the theorem is provided in detail. Rothe’s fixed point theorem is
applied. Some auxiliary theorems are also included. In Section 5 the theoretical results
are illustrated by a numerical example. Finally, some concluding remarks and future
work are presented in Section 6.

2. PRELIMINARIES AND NOTATION

Before we present a system description, let us recall some notions concerning fractional-
order differential equations. Fractional-order differentiation is a generalization of the
integer-order one. There are several definitions of fractional-order derivatives, among
others: the Grünwald-Letnikov, the Riemann-Liouville, the Caputo fractional derivatives
([30]). Since in the Caputo approach the derivative of a constant is equal to zero which
implies that initial conditions for fractional differential equations take on a similar form
as for integer-order differential equations, in this paper we use the Caputo fractional
derivatives.

The Caputo fractional differential operator of a fractional order was introduced by
an Italian mathematician Michele Caputo in 1967. The Caputo fractional derivative of
order α (n < α < n+ 1, n ∈ N∪ {0}) for a differentiable function f : R+ → R is defined
as the following integral

CDαf(t) =
1

Γ(n− α+ 1)

∫ t

0

f (n+1)(τ)

(t− τ)α−n
dτ,
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where Γ is a gamma function.
The Caputo fractional derivative is a linear operator, i. e.

CDα (af(t) + g(t)) = aCDαf(t) +C Dαg(t)

for any constant a, provided that both CDαf(t) and CDαg(t) exist. It is also obvious
that for α→ n, Caputo’s derivative approaches the nth order conventional derivative of
f , that is limα→n

CDαf(t) = f (n)(t). However, since the fractional derivative is defined
based on the definite integral, it is a non-local operator. It has a ”memory property”,
which means that the present state depends not only on the time, but also on previous
states.

Based on the definition of the Mittag–Leffler function ([13, 30])

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C, α > 0, β > 0,

for an arbitrary nth order square matrixA we can give the formula for a pseudo-transition
matrix Φ0(t) of the uncontrolled linear fractional system CDα(t) = Ax(t) ([13, 26])

Φ0(t) = Eα,1(Atα) =

∞∑
k=0

Aktαk

Γ(kα+ 1)
.

Moreover, we introduce the following denotation

Φ(t) = tα−1Eα,α(Atα) = tα−1
∞∑
k=0

Aktαk

Γ((k + 1)α)
.

For α = 1 we obtain the classical transition matrix of ordinary differential equations

Φ0(t) =

∞∑
k=0

Aktk

Γ(k + 1)
=

∞∑
k=0

(At)k

k!
= eAt.

Therefore the pseudo-transition matrix Φ0(t) is also called the matrix α-exponential
function and is denoted by Φ0(t) = eAtα ([13, 15]).

To compute the functions Φ0(t) and Φ(t), several methods are applied, such as the
inverse Laplace transform method, the Jordan matrix decomposition method and the
Cayley–Hamilton method. All the methods are presented in [26]. In the provided
example, the method based on the Cayley–Hamilton theorem is applied. The theorem
states that a matrix A satisfies its own characteristic equation. That is, if

det[sαI −A] = (sα)n + an−1(sα)n−1 + · · ·+ a1s
α + a0,

then
An + an−1(A)n−1 + · · ·+ a1A

α + a0I = 0.

The following notation is also used throughout the paper: L2([0,∞), Rm) is the
Hilbert space of square integrable functions with values in Rm, L2

loc([0,∞), Rm) is the
linear space of locally square integrable functions with values in Rm. Moreover, || · ||L2

means the norm in the space L2
loc([0,∞), Rm).
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3. SYSTEM DESCRIPTION

In the paper the semilinear control systems with multiple delays in control described by
the following fractional-order differential state equation are studied.

CDαx(t) = Ax(t) +

M∑
i=0

Bi u(t− hi) + f(x(t), u(t), u(t− h1), . . . , u(t− hM )) (1)

for t ≥ 0 and 0 < α < 1, where

• x(t) ∈ Rn is a pseudo-state vector,

• u ∈ L2
loc([0,∞),Rm) is a control,

• A is a (n× n)-matrix with real elements,

• Bi are (n×m)-matrices with real elements for i = 0, 1, . . . ,M ,

• hi : [0, T ]→ R, i = 1, 2 . . . ,M are constant point delays in control that satisfy the
following inequalities

0 = h0 < h1 < . . . < hi < . . . < hM−1 < hM < +∞,

• f is the nonlinear mapping f : Rn × Rm × Rm × · · · × Rm → Rn, continuously
differentiable near the origin in the space Rn × Rm × Rm × · · · × Rm such that
f(0, 0, 0, . . . , 0) = 0, there are real constants a, b, c and ξ such that 1

2 ≤ ξ < 1, and
f satisfies the condition

||f(x(t), u(t), u(t− h1), . . . , u(t− hM )||Rn ≤ a||x(t)||Rn + b||u(t)||ξRm + c. (2)

where ||u(t)||Rm =
∑M
i=0 ||u(t− hi)||Rm .

Let z(0) = (x(0), u0) be given initial conditions called the initial complete state. For
time-delay systems, only the complete state z(t) = (x(t), ut(s)), where ut(s) = u(s) for
s ∈ [t− hM (t), t), completely describes the behavior of the system at time t.

Theorem 3.1. (Sikora and Klamka [38]) For the given initial conditions z(0) = (x(0), u0)
∈ Rn × L2([−hM , 0],Rm) and a control u ∈ L2

loc([0,∞),Rm), there exists a unique so-
lution x(t) = x(t, z(0), u) of the semilinear fractional-order system (1), for each t ≥ 0,
taking the following form

x(t) = Φ0(t)x(0) +

∫ t

0

Φ(t− τ)

M∑
i=0

Bi u(τ − hi) dτ (3)

+

∫ t

0

Φ(t− τ)f(x(τ), u(τ), u(τ − h1), . . . , u(τ − hM )) dτ.

As for integer-order dynamical systems, we can define a set of reachable states called
also the attainable set for the fractional system (1).
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Definition 3.2. The attainable set from the initial complete state z(0) = (x(0), u0) on
[0, t1] for the time-delay fractional system (1) is the set

K(t1) =

{
x ∈ Rn : x = x(t1) = Φ0(t1)x(0)

+

∫ t1

0

Φ(t1 − τ)

M∑
i=0

Bi u(τ − hi) dτ (4)

+

∫ t

0

Φ(t− τ)f(x(τ), u(τ), u(τ − h1), . . . , u(τ − hM )) dτ : u(t) ∈ U for t ∈ [0, t1]

}
.

For systems with delays in control, two types of controllability of dynamical systems
are generally considered: relative controllability and absolute controllability [16]. In the
case of relative controllability on [t0, t1], the aim is to find a control u such that the state
x(t1) can be reached using the control. In the case of absolute controllability, the aim
is to reach a function. It means that the final segment of a trajectory (over the interval
[t1 − vM (t1), t1]) should be a given function.

Since fixed point theorems give as an answer to the question whether a solution exists,
which means that a system can be steered to a final state x(t1) (the state x(t1) can be
reached), the relative controllability is studied in the paper.

Definitions of relative controllability from a given initial complete state, local relative
and (global) relative controllability for the semilinear system (1) on [0, t1] are presented
below. The definitions are a consequence of corresponding definitions for integer-order
systems presented in [16].

Definition 3.3. The semilinear fractional-order system (1) is called relatively control-
lable on [0, t1] from the initial complete state z(0) = (x(0), u0) if for each vector x̃ ∈ Rn,
there exists a control ũ ∈ L2([0, T ],Rm) such that

x(t1) = x(t1, z(0), ũ) = x̃.

Especially, the system (1) is relatively null controllable on [0, t1] from the initial
complete state z(0) = (x(0), u0) if for each vector x̃ ∈ Rn, there exists a control ũ ∈
L2([0, T ],Rm) such that the solution x = x(t) satisfies

x(t1) = x(t1, z(0), ũ) = 0.

Definition 3.4. The semilinear fractional system (1) is called locally relatively control-
lable on [0, t1] if the attainable set K(t1) contains a certain neighborhood of zero in the
space Rn.

Definition 3.5. The semilinear fractional system (1) is called (globally) relatively con-
trollable on [0, t1] if it is relatively controllable on [0, t1] for every initial complete state
z(0) = (x(0), u0).

Remark 3.6. Definition 3.5 implies that the system (1) is (globally) relatively control-
lable on [0, t1] if K(t1) = Rn.
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Lemma 3.7. (Iturriaga and Leiva [12]) Let W and Z be Hilbert spaces, S ∈ L(W,Z)
and S∗ ∈ L(Z,W ) be the adjoined operator of S, and dim(Z) < +∞, then the following
statements are equivalent

(i) Rang(S) = Z,

(ii) ker(S∗) = {0},

(iii) ∃γ>0 〈SS∗x, x〉 > γ||x||2, x 6= 0,

(iv) ∃ (SS∗)−1 ∈ L(Z),

where the symbol ∃ stands for the existential quantifier.

Lemma 3.8. (Leiva [23]) Let (X,Σ, µ) be a measure space with µ(X) < +∞ and
1 ≤ q < p < +∞. Then Lp(µ) ⊂ Lq(µ) and

∀f∈Lp(µ) ||f ||Lq ≤ µ(X)
p−q
pq ||f ||Lp .

4. MAIN RESULTS – CONTROLLABILITY CRITERION

In this section we discuss relative controllability of the system (1). We prove, under the
assumed conditions, that if the corresponding linear system

CDαx(t) = Ax(t) +

M∑
i=0

Bi u(t− hi) (5)

is relatively controllable on [0, t1], then the semilinear system (1) is also controllable on
[0, t1]. Moreover we give a control ũ that steers the semilinear system (1) from an initial
complete state z(0) = (x(0), u0) into a final state x1 = x(t1, z(0), ũ).

Rothe’s fixed point theorem is used to prove the sufficient condition. Thus let us
recall the theorem (see [11, 39]).

Theorem 4.1. (Rothe’s fixed point theorem) Let E be a Banach space and B ⊂ E be a
closed convex subset such that zero of E is contained in the interior of B. Let g : B → E
be a continuous mapping with g(B) relatively compact (closure is compact) in E and
g(∂B) ⊂ B, where ∂B denotes the boundary of B. Then there is a point x∗ ∈ B such
that g(x∗) = x∗.

Since the Mittag–Leffler function is of exponential order, the following inequality
holds for t > 0

∃M1>0 ∃%≥0 ||Φ(t)|| ≤M1e
%t.

Without loss of generality, let us assume zero initial conditions z(0) = (0, 0) and
c = 0. Taking into account the assumption (2), we may formulate the theorem below.

Lemma 4.2. The solution (3) satisfies the following estimation

||x(t)|| ≤
(∫ t1

0

||B||M1e
%(t1−τ)||u(τ)||dτ +

∫ t1

0

bM1e
%(t1−τ)||u(τ)||ξ dτ

)
eaM1t1 , (6)
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where ||B|| =
∑M
i=0 ||Bi|| =

∑M
i=0 max |bikj |, 1 ≤ k ≤ n, 1 ≤ j ≤ m, and ||u(t)|| =

||u(t)||Rm =
∑M
i=0 ||u(t− hi)||Rm .

Next, let us transform the solution (2) of the fractional system (1). By substitution
and definite integral properties, the solution of (1) can be rewritten in the following form

x(t1, z(0), u) = Φ0(t1)q(z(0)) +

∫ t1

0

Φ(t1 − τ)Bt1u(τ) dτ (7)

+

∫ t1

0

Φ(t1 − τ)f(x(τ), u(τ), u(τ − h1), . . . , u(τ − hM )) dτ,

where

q(z(0)) = x(0) +
(
Φ0(t1)

)−1[ k∑
i=0

∫ 0

−hi
Φ(t1 − τ − hi)Biu0(τ) dτ

+

M∑
i=k+1

∫ t1−hi

−hi
Φ(t1 − τ − hi)Biu0(τ) dτ

]
,

Bt1(t) =
(
Φ(t1 − τ)

)−1 i∑
j=0

Φ(t1 − τ − hj)Bj ,

for t ∈ [t1 − hi+1, t1 − hi), i = 0, 1, ..., k − 1. Since q(z(0)) depends only on initial
conditions, if we take zero initial conditions, q(z(0)) = 0. To simplify the notation, we
introduce the following definition.

Definition 4.3. For the semilinear fractional system (1) the functions
G,Gf : L2([0, t1],Rm)→ Rn defined by the formulas

G(u) =

∫ t1

0

Φ(t1 − τ)Bt1(τ)u(τ) dτ (8)

Gf (u) =

∫ t1

0

Φ(t1 − τ)Bt1(τ)u(τ) dτ (9)

+

∫ t1

0

Φ(t1 − τ)f(x̃(τ), u(τ), u(τ − h1), . . . , u(τ − hM )) dτ

are called controllability operators for t1 > 0, where x̃ is the unique solution of the
fractional differential equation (1).

Hence, the controllability operator Gf (u) can be written as the following sum

Gf (u) = G(u) +H(u),

where H : L2([0, t1],Rm)→ Rn is the nonlinear operator given by

H(u) =

∫ t1

0

Φ(t1 − τ)f(x̃(τ), u(τ), u(τ − h1), . . . , u(τ − hM )) dτ.

Consider the adjoined operator G∗ : Rn → L2([0, t1],Rm) of the operator G

G∗(x) = B∗t1(τ)Φ∗(t1 − τ)x = B∗t1(τ)Eα,α(A∗(t1 − τ)α)x, τ ∈ [0, t1].
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Lemma 4.4. The system (5) is relatively controllable on [0, t1] if and only if Rang(G) =
Rn. Moreover, the system (1) is relatively controllable on [0, t1] if and only if Rang(G) =
Rn and Rang(Gf ) = Rn.

P r o o f . It follows immediately from formulas (8) and (9), and Remark 3.6. �

Theorem 4.5. If the linear system (5) is relatively controllable on [0, t1] and the fol-
lowing inequality holds

1

γ
√

2
||B||2M3

1 a
√
t1e

aM1t1

(
e2%t1 − 1

%

) 3
2

< 1, (10)

then the semilinear system (1) is also relatively controllable on [0, t1]. Moreover, a
control steering the system (1) from the initial complete state z(0) = (x(0), u0) to a
final state x̃ = x(t1) at time t1 > 0 is given by the formula

u(t) = B∗t1(t)Eα,α(A∗(t1 − t)α)(GG∗)−1 (x̃− Φ0(t1)q(z(0))−H(u)) , t ∈ [0, t1]. (11)

P r o o f . For each x ∈ Rn fixed we define an operator Γ: L2([0, t1],Rm)→ L2([0, t1],Rm)
by the formula

Γ(u) = G∗(GG∗)−1(x−H(u)).

Γ is defined properly, because (GG∗)−1 exists which follows from Lemmma 3.7(iv).
Moreover, from (iii)

||(GG∗)−1x|| ≤ γ−1||x||.

We shall prove that the operator Γ has a fixed point u that depends on x.
Since f is continuous, the operator H is continuous. Next, due to inequality (2), H

is a compact operator.
For u ∈ L2([0, t1],Rm), applying the Hölder inequality and condition (2), we have the

following estimation

||H(u)|| ≤
∫ t1

0

M1e
%(t1−τ)f(x̃(τ), u(τ), u(τ − h1), . . . , u(τ − hM )) dτ

≤
(∫ t1

0

M2
1 e

2%(t1−τ)dτ

) 1
2
(∫ t1

0

||f(x̃(τ), u(τ), u(τ − h1), . . . , u(τ − hM ))||2 dτ

) 1
2

= N

(∫ t1

0

||f(x̃(τ), u(τ), u(τ − h1), . . . , u(τ − hM ))||2 dtau

) 1
2

≤ N
(∫ t1

0

(
a||x(τ)||+ b||u(τ)||ξ

)2
dτ

) 1
2

≤ N
(∫ t1

0

(
4a2||x(τ)||2 + 4b2||u(τ)||2ξ

)
dτ

) 1
2



On application of Rothe’s fixed point theorem 683

≤ 2Na

(∫ t1

0

||x(τ)||2 dτ

) 1
2

+ 2Nb

(∫ t1

0

||u(τ)||2ξ dτ

) 1
2

≤ 2Na

(∫ t1

0

(∫ t1

0

||B||M1e
%(t1−s)||u(s)||ds+

∫ t1

0

bM1e
%(t1−s)||u(s)||ξ ds

)2

e2aM1t1 dτ

) 1
2

+2Nb

[(∫ t1

0

||u(τ)||2ξ dτ

) 1
2ξ

]ξ

≤ 2Na
√
t1

(∫ t1

0

||B||M1e
%(t1−τ)||u(τ)||dτ +

∫ t1

0

bM1e
%(t1−τ)||u(τ)||ξ dτ

)
eaM1t1

+2Nb (||u||L2ξ)
ξ
,

where L2ξ = L2ξ([0, t1],Rm) and N =
(∫ t1

0
M2

1 e
2%(t1−τ)dτ

) 1
2

.

Since 1
2 ≤ ξ < 1, we obtain 1 ≤ ξ < 2. Applying Lemma 3.7 we have

||H(u)|| ≤ 2N2a
√
t1||B||eaM1t1 ||u||L2 + 2Nbt

1−ξ
2

1 (Na
√
t1e

aM1t1 + 1) (||u||L2ξ)
ξ
,

which implies

lim
||u||L2→+∞

||H(u)||L2

||u||L2

≤ M2
1

%
a
√
t1||B||eaM1t1(e2%t1 − 1).

Therefore,

lim
||u||L2→∞

||Γ(u)||L2

||u||L2

≤ ||G∗(GG∗)−1||M
2
1

%
a
√
t1||B||eaM1t1(e2%t1 − 1)

and, finally,

lim
||u||L2→∞

||Γ(u)||L2

||u||L2

≤ 1

γ
√

2
||B||2M3

1 a
√
t1e

aM1t1

(
e2%t1 − 1

%

) 3
2

.

Let us denote r = 1
γ
√
2
||B||2M3

1 a
√
t1e

aM1t1
(
e2%t1−1

%

) 3
2

. By the assumption, r < 1.

From the above it follows that for a fixed ε, r < ε < 1, there exists r0 > 0 (big enough)
such that

||Γ(u)||L2 ≤ ε||u||L2 = εr0.

Let B(0, r0) denote the ball of center at zero and radius r0 > 0, then Γ(∂B(0, r0)) ⊂
B(0, r0). The operator Γ is compact and maps the sphere ∂B(0, r0) into the interior of
the ball B(0, r0), the Rothe fixed point theorem can be applied. Hence, it follows that
there exists a fixed point u ∈ B(0, r0) ⊂ L2([0, t1],Rm) such that

u = G∗(GG∗)−1(x−H(u)).
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Since G(u) = x−H(u), putting x = x̃− Φ0(t1)q(z(0)), we have

x̃ = Φ0(t1)q(z(0)) +

∫ t1

0

Φ(t1 − τ)Bt1u(τ) dτ (12)

+

∫ t1

0

Φ(t1 − τ)f(x(τ), u(τ), u(τ − h1), . . . , u(τ − hM )) dτ.

Thus, x̃ is the solution of the system (1), and it is easy to verify that x̃ = x(t1).
Therefore the system is relatively controllable on [0, t1].

Finally, from the above, we obtain the control steering the system (1) from the initial
complete state z(0) = (x(0), u0) to a final state x̃ = x(t1) at time t1 > 0, given by the
following formula

u(t) = B∗t1(t)Eα,α(A∗(t1 − t)α)(GG∗)−1 (x̃− Φ0(t1)q(z(0))−H(u)) , t ∈ [0, t1].

�

Remark 4.6. Criteria for relative controllability of linear fractional-order systems of
the form (4) have been formulated and proved in [35] and [37].

Theorem 4.7. Let u(t) ∈ U , where U ⊂ Rm is a convex and compact set containing 0
in its interior. If the linear system (5) is relatively controllable on [0, t1], the inequality
(10) holds and |arg(λi)| > απ2 , 1 ≤ i ≤ n, where λi are the eigenvalues of matrix A,
then the semilinear system (1) is relatively null controllable on [0, t1].

P r o o f . Assume that U ⊂ Rm is a convex and compact set containing 0 in its inte-
rior and u(t) ∈ U . If the linear system (5) is relatively controllable on [0, t1] and the
inequality (10) holds, then the semilinear fractional system (1) is relatively controllable
on [0, t1] by Theorem 4.5. Moreover, if the eigenvalues of matrix A satisfy the condition
|arg(λi)| > απ2 , 1 ≤ i ≤ n, then the fractional system (1) is asymptotically stable (see:
[10, 28]). Owing the asymptotical stability assumption, x = 0 is the solution of the sys-
tem (1) for the admissible control u(t) = 0. Using the null control u(t) = 0, the solution
x(t, z(t0), 0) of (1) satisfies the conditions

lim
t→+∞

x(t, z(t0), 0) = 0 and x(t1, z(t0), 0) ∈ N(0),

for some, finite t1 ∈ (0,+∞), where N(0) is a sufficiently small neighborhood of 0 ∈ Rn.
Then, since U ⊂ Rm is a convex and compact set, the instantaneous state x(t1, z(t0), 0)
can be steered to 0 ∈ Rn in finite time. Therefore the fractional system (1) is relatively
null controllable on [0, t1]. �

5. EXAMPLES

In this section a numerical example is presented to illustrate the obtained theoretical
results. Moreover, an example of practical problem modeled by a fractional semilinear
differential equation considered in the paper is given.
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Example 5.1. Consider the following semilinear fractional dynamical system with de-
lays in control

CD
1
2x(t) = x(t) + u(t) + u(t− 1) + u(t− 2) + sinx(t) + cosu(t− 2)− 1 (13)

for t ∈ [0, 2], with zero initial conditions z(0) = (0, 0).
Thus we have A = 1, ∀i=0,...,2Bi = 1, (M = 2), and two delays in control h1 =

1, h2 = 2. The nonlinear function f is defined by

f(x(t), u(t− 2)) = sinx(t) + cosu(t− 2)− 1.

Of course k = 2 since t1 − h2 = 0.
The pseudo-transition matrix Φ0(t) of the system (13) has the following form

Φ0(t) =

∞∑
k=0

t
k
2

Γ(k2 + 1)

and

Φ(t) = t−
1
2

∞∑
k=0

t
k
2

Γ( 1
2 (k + 1))

.

Using the Cayley-Hamilton method we calculate

Φ(t) = t−
1
2E 1

2 ,
1
2
(At

1
2 ) = t−

1
2

1∑
k=0

t
k
2

Γ( 1
2 (k + 1))

= t−
1
2

(
t0√
π

+
t
1
2

1

)
=

1√
tπ

+ 1

and

(Φ(t))
−1

=

√
tπ

1 +
√
tπ
.

The corresponding linear fractional-order system is relatively controllable on [0, 2],
since (see [37], Lemmma 4.1)

rank

2∑
i=0

∫ t1−hi

−hi
(t1−τ−hi)−

1
2E 1

2 ,
1
2
(A(t1−τ−hi)

1
2 )BiB

T
i E 1

2 ,
1
2
(AT (t1−τ−hi)

1
2 )dτ=n = 1.

We also see that f satisfies the condition (2)

|f(x(t), u(t− 2))| = | sinx(t) + cosu(t− 2)− 1|

≤ | sinx(t)|+ | cosu(t− 2)| − 1 ≤ |x(t)|+ |u(t)| 12 .

We have: a = 1, b = 1, ξ = 1
2 and ||B|| = 3, so

1

γ
√

2
||B||2M3

1 a
√
t1e

aM1t1

(
e2%t1 − 1

%

) 3
2

=
9

γ
√

2
M3

1

√
2e2M1

(
e4% − 1

%

) 3
2

=
9

γ
M3

1 e
2M1

(
e4% − 1

%

) 3
2

=
72

γ
M3

1 e
2M1

(
e4% − 1

4%

) 3
2

.
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For % → 0,
(
e4%−1
4%

) 3
2 → 1, so it is possible to choose γ and M1 such that |Φ(2)| =

| 1√
2π

+ 1| ≤ M1 and 72M3
1 e

2M1 < γ. Then the condition (10) holds, and applying

Theorem 4.5 we conclude that the semilinear fractional-order system (13) is relatively
controllable on [0, 2].

Moreover, since

B2(t) =
(
Φ(2− t)

)−1 i∑
j=0

Φ(2− t− hj)Bj ,

for t ∈ [2− hi+1, 2− hi), i = 0, 1, we have

B2(t)=

{(
Φ(2− t))−1

(
Φ(2− t)B0+Φ(2−t−1)B1

)
, t ∈ [0, 1),(

Φ(2− t)
)−1

Φ(2− t)B0, t ∈ [1, 2).

It follows that

B2(t)=

1 +
1+
√

(1−t)π
1+
√

(2−t)π
·
√

2−t
1−t , t ∈ [0, 1),

1, t ∈ [1, 2),

and we may determine

u(t) = B∗2(t)E 1
2 ,

1
2
(A∗(2− t)α)(GG∗)−1 (x̃−H(u)) , t ∈ [0, 2],

steering the system (13) from the initial complete state z(0) = (0, 0) to a final state
x̃ = x(2), given by the formula (12).

Example 5.2. An example of fractional-order semilinear system with delays in con-
trol considered in the paper can be a system of chemical solution control composed of
a parallel connection of two fully filled mixers and two reactors. Simplifying the partial
differential equation that describes the reactors [24], we obtain the following fractional
version of semilinear state equations{

CDαc1(t) = −Q
∗

V c1(t) + Q∗

V cwe1(t− h1) + f1(c1(t), cwe1(t− h1))

CDαc2(t) = −Q
∗

V c1(t) + Q∗

V cwe1(t− h2) + f2(c1(t), c2(t), cwe1(t− h1), cwe2(t− h2))

where 0 < α ≤ 1, c1(t), c2(t) are strengths of solutions in the mixers (states), cwe1(t),
cwe2(t) are input concentrations of a product (controls), Q∗ is the constant intensity
of flow, V is the volume of each mixer (for simplicity, the same volume of both mixers
is assumed), h1, h2 (h1 < h2) are constant delays in control, and f1, f2 are functions
determining changes in the concentration of the substance during the mixing in the
corresponding mixers.

6. CONCLUDING REMARKS

The relative controllability of semilinear fractional control systems with delays in control
has been discussed in the paper. The nonlinear function f was assumed to be smooth
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enough and to satisfy the condition (2). Definitions of relative controllability from a
given initial complete state, local relative controllability and relative controllability on
the interval [0, t1] (called also global relative controllability) for the systems have been
formulated. The formula for solution of the fractional-order differential equation (1) has
been presented. Moreover, it has been rewritten into a form allowing to indicate an
admissible control u.

The main result of the paper is the new controllability criterion of relative controlla-
bility of time-delay fractional semilinear systems described by the equation (1), which
has been established and proved. The criterion (Theorem 4.5) is based on the Rothe
fixed point theorem. Example 5.1 has been presented to illustrate how to verify the
relative controllability of the discussed systems with the aid of the established criterion
(Example 5.1). Moreover, a practical example has been included to show a possible
application of the study (Example 5.2).

We deal with semilinear systems with delays in control also in modeling the process
of steel rolling, where thickness can only be measured at some distances from rolls (this
leads to measurement delays), or in metal cutting modeling, where delays depend on
full rotation time. In future, we plan to propose a fractional model and find an optimal
control for the steel rolling process, since fractional calculus provides more accurate
models of the systems under consideration.

(Received February 14, 2018)
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