Kybernetika 55 no. 4, 641-667, 2019

Construction methods for implications on bounded lattices

M. Nesibe KesicioğluDOI: 10.14736/kyb-2019-4-0641


In this paper, the ordinal sum construction methods of implications on bounded lattices are studied. Necessary and sufficient conditions of an ordinal sum for obtaining an implication are presented. New ordinal sum construction methods on bounded lattices which generate implications are discussed. Some basic properties of ordinal sum implications are studied.


ordinal sum, bounded lattice, implication


03E72, 03B52


  1. M. Baczyński, P. Drygaś, A. Król and R. Mesiar: New types of ordinal sum of fuzzy implications. In: Fuzzy systems (FUZZ-IEEE), 2017 IEEE International Conference, 2017.   DOI:10.1109/fuzz-ieee.2017.8015700
  2. M. Baczyński and B. Jayaram: Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer, Berlin, Heidelberg, 2008.   CrossRef
  3. G. Birkhoff: Lattice Theory. Third edition. Providence, 1967.   DOI:10.1090/coll/025
  4. G. D. Çaylı: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets and Systems 132 (2018), 129-143.   DOI:10.1016/j.fss.2017.07.015
  5. P. Drygaś and A. Król: Various kinds of fuzzy implications. In: Novel Developments in Uncertainty Represent, and Processing (K. T. Atanassov et al., eds.), Advences in Intelligent Systems and Computing 401, Springer Internat. Publ. AG, 2016, pp. 37-49.   DOI:10.1007/978-3-319-26211-6\_4
  6. P. Drygaś and A. Król: Generating fuzzy implications by ordinal sums. Tatra Mt. Math. Publ. 66 (2016), 39-50.   DOI:10.1515/tmmp-2016-0018
  7. D. Dubois and H. Prade: A review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985), 85-121.   DOI:10.1016/0020-0255(85)90027-1
  8. D. Dubois and H. Prade: Fuzzy sets in approximate reasoning, Part 1: inference with possibility distributions. Fuzzy Sets and Systems 40 (1991), 143-202.   DOI:10.1016/0165-0114(91)90050-z
  9. Ü. Ertuğrul, M. N. Kesicioğlu and F. Karaçal: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327.   DOI:10.1016/j.ins.2015.10.019
  10. Ü. Ertuğrul, F. Karaçal and R. Mesiar: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817.   DOI:10.1002/int.21713
  11. J. Fodor and I. J. Rudas: Migrative t-norms with respect to continuous ordinal sums. Inform. Sci. 181 (2011), 4860-4866.   DOI:10.1016/j.ins.2011.05.014
  12. M. Grabisch, J.-L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press, 2009.   DOI:10.1109/sisy.2008.4664901
  13. M. N. Kesicioğlu and R. Mesiar: Ordering based on implications. Inform. Sci. 276 (2014), 377-386.   DOI:10.1016/j.ins.2013.12.047
  14. E. P. Klement and R. Mesiar (eds.): Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam 2005.   CrossRef
  15. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   CrossRef
  16. E. P. Klement, R. Mesiar and E. Pap: Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford. Semigroup Forum 65 (2002), 71-82.   DOI:10.1007/s002330010127
  17. Z. Ma and W. M. Wu: Logical operators on complete lattices. Inform. Sci. 55 (1991), 77-97.   DOI:10.1016/0020-0255(91)90007-h
  18. M. Mas, M. Monserrat and J. Torrens: The law of importation for discrete implications. Inform. Sci. 179 (2009), 4208-4218.   DOI:10.1016/j.ins.2009.08.028
  19. M. Mas, M. Monserrat, J. Torrens and E. Trillas: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121.   DOI:10.1109/tfuzz.2007.896304
  20. J. Medina: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets and Systems 202 (2012), 75-88.   DOI:10.1016/j.fss.2012.03.002
  21. R. Mesiar and A. Mesiarová: Residual implications and left-continuous t-norms which are ordinal sum of semigroups. Fuzzy Sets and Systems 143 (2004), 47-57.   DOI:10.1016/j.fss.2003.06.008
  22. A. Mesiarová-Zemánková: Ordinal sum construction for uninorms and generalized uninorms. Int. J. Approx. Reason. 76 (2016), 1-17.   DOI:10.1016/j.ijar.2016.04.007
  23. A. Mesiarová-Zemánková: Ordinal sums of representable uninorms. Fuzzy Sets and Systems 308 (2017), 42-53.   DOI:10.1016/j.fss.2016.07.006
  24. J. V. Riera and J. Torrens: Residual implications on the set of discrete fuzzy numbers. Inform. Sci. 247 (2013), 131-143.   DOI:10.1016/j.ins.2013.06.008
  25. S. Saminger: On ordinal sum of triangular norms on bounded lattices. Fuzzy Sets and Systems 157 (2006), 1403-1416.   DOI:10.1016/j.fss.2005.12.021
  26. Y. Su, A. Xie and H. Liu: On ordinal sum implications. Inform. Sci. 293 (2015), 251-262.   DOI:10.1016/j.ins.2014.09.021
  27. A. Xie, H. Liu, F. Zhang and C. Li: On the distributivity of fuzzy implications over continuous Archimedean t-conorms and continuous t-conorms given as ordinal sums. Fuzzy Sets and Systems 205 (2012), 76-100.   DOI:10.1016/j.fss.2012.01.009
  28. R. R. Yager: Aggregation operators and fuzzy systems modelling. Fuzzy Sets and Systems 67 (1994), 129-145.   DOI:10.1016/0165-0114(94)90082-5
  29. R. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6