Kybernetika 55 no. 3, 561-585, 2019

A family of hyperbolic-type control schemes for robot manipulators

Fernando Reyes-Cortes, Olga Felix-Beltran, Jaime Cid-Monjaraz and Gweni Alonso-AruffoDOI: 10.14736/kyb-2019-3-0561


This paper deals with the global position control problem of robot manipulators in joint space, a new family of control schemes consisting of a suitable combination of hyperbolic functions is presented. The proposed control family includes a large class of bounded hyperbolic-type control schemes to drive both position error and derivative action terms plus gravity compensation. To ensure global asymptotic stability of closed-loop system equilibrium point, we propose an energy-shaping based strict Lyapunov function. To verify the efficiency of the proposed control algorithm, an experimental comparative analysis between the well known unbounded linear PD control and three hyperbolic-type control schemes of the proposed family on a three degrees of freedom direct-drive robot manipulator is analysed.


control, Lyapunov stability, robot-manipulator, regulation


68T40, 93C85, 93D05


  1. E. Aguiñaga. A. Zavala, V. Santibañez and F. Reyes: Global trajectory tracking through static feedback for robot manipulators with bounded inputs. IEEE Trans. Control Systems Technol. 17 (2009), 4, 934-944.   DOI:10.1109/tcst.2009.2013938
  2. R. J. Caverly, D. E. Zlotink, L. J. Bridgeman and J. R. Fobres: Saturated proportional derivative control of a single-link flexible-joint manipulator. Robotics computer-Integrated Manufact. 30 (2014), 658-666.   DOI:10.1016/j.rcim.2014.06.001
  3. R. J. Caverly, D. E. Zlotink and J. R. Forbes: Saturated control of flexible-joint manipulators using a Hammerstein strictly positive real compensator. Robotica 34 (2014), 1367-1382.   DOI:10.1017/s0263574714002343
  4. C. Chavez-Olivares, F. Reyes-Cortes, E. Gonzalez-Galvan, M. Mendoza-Gutierrez and I. Bonilla-Gutierrez: Experimental evaluation of parameter identification on an anthropomorphic direct drive robot. Int. J. Advanced Robotic Systems 9 (2012), 4, 1-18.   DOI:10.5772/52190
  5. J. Craig, P. Hsu and S. Sastry: Adaptive control of mechanical manipulators. Int. J. Robotics Research 6 (1987), 2, 16-28.   DOI:10.1177/027836498700600202
  6. A. del Petre: Joint position and velocity bounds in discrete-time acceleration/torque control of robot manipulators. IEEE Robotics Automat. Lett. 3 (2018), 1, 281--288.   DOI:10.1109/lra.2017.2738321
  7. N. Fischer, A. Dani, N. Sharma and W. Dixon: Saturated control of an uncertain nonlinear system with input delay. Automatica 49 (2013), 1741-1747.   DOI:10.1016/j.automatica.2013.02.013
  8. N. Fischer, Z. Kan, R. Kamalapurkar and W. Dixon: Saturated RISE feedback control for a class of second-order nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 4, 1094-1099.   DOI:10.1109/tac.2013.2286913
  9. A. Izadbakhsh and P. Kheirkhahan: Nonlinear PID control of electrical flexible joint robots-Theory and experimental verification. In: 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon 2018, pp. 250-255.   DOI:10.1109/icit.2018.8352185
  10. A. Izadbakhsh and M. M. Fateh: Real-time robust adaptive control of robots subjected to actuator voltage constraint. Nonlinear Dynamics, Springer 78 (2014) 3, 1999-2014.   DOI:10.1007/s11071-014-1574-z
  11. A. Izadbakhsh and P. Kheirkhahan: On the voltage-based control of robot manipulators revisited. Int. J. Control, Automat. Systems 16 (2018), 4, 1887-1894.   DOI:10.1007/s12555-017-0035-0
  12. R. Kelly and V. Santibañez: Global regulation of elastic joint robots based on energy shaping. IEEE Trans. Automat. Control 43 (1998), 10, 1451-1456.   DOI:10.1109/9.720506
  13. R. Kelly, V. Santibañez and A. Loria: Control of Robot Manipukators in Joint Space. Springer, 2005.   DOI:10.1002/rnc.1114
  14. D. Lopez, A. Loria and A. Zavala: Adaptive tracking control of Euler-Lagrange systems with bounded controls. Int. J. Adaptive Control Signal Process. 31 (2017), 299-313.   DOI:10.1002/acs.2697
  15. M. Mendoza, I. Bonilla, F. Reyes and E. Gonzalez-Galvan: A Lyapunov-based design tool of impedance controllers for robot manipulators. Kybernetika 48 (2012), 6, 1136-1155.   CrossRef
  16. M. Mendoza, A. Zavala-Rao, V. Santibanez and F. Reyes: Output-feedback proportional-integral-derivative-type control with simple tuning fot the global regulation of robot manipulators with input constraints. IET Control Theory Appl. Inst. Engrg. Technol. 10000 (2015), 1-10.   DOI:10.1049/iet-cta.2014.0680
  17. J. Moreno and V. Santibañez: Robust saturated pi joint velocity control for robot manipulators. Asian J. Control 15 (2013), 1, 64-79.   DOI:10.1002/asjc.586
  18. J. Orrante, V. Santibañez and M. Hernandez: A new tuning procedure for nonlinear PID global regulators with bounded| torques for rigid robots. Robotica 33 (2015), 4, 1926-1947.   DOI:10.1017/s0263574714001131
  19. J. A. Ramirez, V. Santibañez and R. Campa: Stability of robot manipulators under saturated PID compensation. IEEE Trans. Control Systems Technol. {\mi16} (2008), 6, 1333-1341.   DOI:10.1109/tcst.2008.917875
  20. F. Reyes, J. Cid, M. A. Limon and M. Cervantes: Square root-type control for robot manipulators. Int. J. Advanced Robotic Systems 10 (2013), 39, 1-7.   DOI:10.5772/52500
  21. M. C. Rodriguez, I. Bonilla, M. Mendoza and C. Chavez: Saturating stiffness control of robot manipulators with bounded inputs. Int. J. Appl. Math. Computer Sci. 27 (2017), 1, 79-90.   DOI:10.1515/amcs-2017-0006
  22. J. G. Romero, R. Ortega and A. Donaire: Robust energy shaping control of mechanical systems. Systems Control Lett. 62 (2016), 770-780.   DOI:10.1016/j.sysconle.2013.05.011
  23. V. Santibañez, R. Kelly and F. Reyes: A new set-point controller with bounded torques for robot manipulators. IEEE Trans. Industr. Electron. 45 (1998), 1, 126-133.   DOI:10.1109/41.661313
  24. V. Santibañez, R. Kelly and M. A. Llama: A novel global asymptotic stable set-point fuzzy controller with bounded torques for robot manipulators. IEEE Trans. Fuzzy Systems 13 (2005), 3, 362-372.   DOI:10.1109/tfuzz.2004.841735
  25. K. Shojaei and A. Chatraei: A saturating extension of an output feedback controller for internally damped Euler-Lagrange systems. Asian J. Control 17 (2015), 6, 2175-2187.   DOI:10.1002/asjc.1115
  26. B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo: Robotics: Modelling, Planning and Control. Springer Publishing Company, Incorporated, 2010.   CrossRef
  27. B. Siciliano and O. Kathib: Handbook of Robotics. Second Edition. Springer, 2016.   DOI:10.1007/978-3-319-32552-1\_1
  28. M. W. Spong, S. Hutchinson and M. Vidyasagar: Robot Modeling and Control. John Wiley and Sons, Inc., 2006.   DOI:10.1108/ir.2006.33.5.403.1
  29. Y. Su, P. C. Muller and C. Zheng: Global asymptotic saturated PID Control for robot manipulators. IEEE Trans. Control Systems Technol. 18 (2010), 6, 1280-1288.   DOI:10.1109/tcst.2009.2035924
  30. D. Sun, S. Hu, X. Shao and C. Liu: Global stability of a saturated nonlinear PID controller for robot manipulators. IEEE Trans. Control Systems Technol. 17 (2009), 4, 892-899.   DOI:10.1109/tcst.2008.2011748
  31. M. Takegaki and S. Arimoto: A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst. Meas. Control 103 (1981), 119-125.   DOI:10.1115/1.3139651
  32. A. Yarza, V. Santibañez and J. Moreno: Global asymptotic stability of the classical PID controller by considering saturation effects in industrial robots. Int. J. Advanced Robotic Systems 8 (2011), 4, 34-42.   DOI:10.5772/45688
  33. A. Zavala, M. Mendoza, V. Santibañez and F. Reyes: Output-feedback proportional-integral-derivative-type control with multiple saturating structure for the global stabilization of robot manipulators with bounded inputs. Int. J. Advanced Robotic Systems 6 (2016), 1-12.   DOI:10.1177/1729881416663368
  34. A. Zelei, L. Bencsik and G. Stepan: Handling Actuator Saturation As Underactuation: Case study with acroboter service robot. J. Computat. Nonlinear Dynamics 12 (2016), 3, 031011-031015.   DOI:10.1115/1.4034868