Kybernetika 55 no. 2, 307-336, 2019

On continuity of the entropy-based differently implicational algorithm

Yiming Tang and Witold PedryczDOI: 10.14736/kyb-2019-2-0307

Abstract:

Aiming at the previously-proposed entropy-based differently implicational algorithm of fuzzy inference, this study analyzes its continuity. To begin with, for the FMP (fuzzy modus ponens) and FMT (fuzzy modus tollens) problems, the continuous as well as uniformly continuous properties of the entropy-based differently implicational algorithm are demonstrated for the Tchebyshev and Hamming metrics, in which the R-implications derived from left-continuous t-norms are employed. Furthermore, four numerical fuzzy inference examples are provided, and it is found that the entropy-based differently implicational algorithm can obtain more reasonable solution in contrast with the fuzzy entropy full implication algorithm. Finally, in the entropy-based differently implicational algorithm, we point out that the first fuzzy implication reflects the effect of rule base, and that the second fuzzy implication embodies the inference mechanism.

Keywords:

continuity, fuzzy entropy, fuzzy inference, compositional rule of inference

Classification:

03B52, 94D05

References:

  1. M. Baczyński and B. Jayaram: (S,N)- and R-implications: A state-of-the-art survey. Fuzzy Set Syst. 159 (2008), 1836-1859.   DOI:10.1016/j.fss.2007.11.015
  2. M. Baczyński and B. Jayaram: Fuzzy implications (Studies in Fuzziness and Soft Computing, Vol. 231. Springer, Berlin Heidelberg 2008.   CrossRef
  3. B. B. Chaudhuria and A. Rosenfeldb: A modified Hausdorff distance between fuzzy sets. Inform. Sci. 118 (1999), 159-171.   DOI:10.1016/s0020-0255(99)00037-7
  4. S. S. Dai, D. W. Pei and S. M. Wang: Perturbation of fuzzy sets and fuzzy reasoning based on normalized Minkowski distances. Fuzzy Set Syst. 189 (2012), 63-73.   DOI:10.1016/j.fss.2011.07.012
  5. S. S. Dai, D. W. Pei and D. H. Guo: Robustness analysis of full implication inference method. Int. J. Approx. Reason. 54 (2013), 653-666.   DOI:10.1016/j.ijar.2012.11.007
  6. F. Liu, W. G. Zhang and J. H. Fu: A new method of obtaining the priority weights from an interval fuzzy preference relation. Inform. Sci. 185 (2012), 32-42.   DOI:10.1016/j.ins.2011.09.019
  7. F. Liu, W. G. Zhang and Z. X. Wang: A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making Eur. J. Oper. Res. 218 (2012), 747-754.   DOI:10.1016/j.ejor.2011.11.042
  8. J. C. Fodor: Contrapositive symmetry of fuzzy implications. Fuzzy Set Syst. 69 (1995), 141-156.   DOI:10.1016/0165-0114(94)00210-x
  9. J. Fodor and M. Roubens: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht, 1994.   DOI:10.1007/978-94-017-1648-2
  10. S. Gottwald: A Treatise on Many-Valued Logics. Research Studies, Studies in Logic and Computation 9, Baldock 2001.   CrossRef
  11. F. F. Guo, T. Y. Chen and Z. Q. Xia: Triple I methods for fuzzy reasoning based on maximum fuzzy entropy principle. Fuzzy Syst. Math. 17 (2003), 55-59.   CrossRef
  12. D. H. Hong and S. Y. Hwang: A note on the value similarity of fuzzy systems variable. Fuzzy Set Syst. 66 (1994), 383-386.   DOI:10.1016/0165-0114(94)90107-4
  13. B. Jayaram: On the law of importation $(x\wedge y) \rightarrow z \equiv (x\rightarrow (y\rightarrow z))$ in fuzzy logic. IEEE Trans. Fuzzy Syst. 16 (2008), 130-144.   DOI:10.1109/tfuzz.2007.895969
  14. E. T. Jaynes: Where do we stand on maximum entropy? In: The Maximum Entropy Formalism (R. .D. Levine and M. Tribus, eds.), MIT Press, Cambridge 1978, pp. 15-118.   CrossRef
  15. E. T. Jaynes: On the rationale of maximum-entropy methods. Proc. IEEE, 70 (1982), 939-952.   DOI:10.1109/proc.1982.12425
  16. S. Jenei: Continuity on Zadeh's compositional rule of inference. Fuzzy Set Syst. 104 (1999), 333-339.   DOI:10.1016/s0165-0114(97)00198-x
  17. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   DOI:10.1007/978-94-015-9540-7
  18. H. X. Li: Probability representations of fuzzy systems. Sci. China Ser. F-Inf. Sci. 49 (2006), 339-363.   DOI:10.1007/s11432-006-0339-9
  19. H. Li and E. S. Lee: Interpolation representations of fuzzy logic systems. Comput. Math. Appl. 45 (2003), 1683-1693.   DOI:10.1016/s0898-1221(03)00147-0
  20. M. X. Luo and B. Liu: Robustness of interval-valued fuzzy inference triple I algorithms based on normalized Minkowski distance. J. Log. Algebr. Methods 86 (2017), 298-307.   DOI:10.1016/j.jlamp.2016.09.006
  21. M. Mas, M. Monserrat, J. Torrens and E. Trillas: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121.   DOI:10.1109/tfuzz.2007.896304
  22. V. Novák, I. Perfilieva and J. Močkoř: Mathematical Principles of Fuzzy Logic. Kluwer Academic Publishes, Boston, Dordrecht 1999.   DOI:10.1007/978-1-4615-5217-8
  23. L. M. Pang, K. M. Tay and C. P. Lim: Monotone fuzzy rule relabeling for the zero-order TSK fuzzy inference system. IEEE Trans. Fuzzy Syst. 24 (2016), 1455-1463.   DOI:10.1109/tfuzz.2016.2540059
  24. W. Pedrycz: Granular Computing: Analysis and Design of Intelligent Systems. CRC Press/Francis and Taylor, Boca Raton 2013.   CrossRef
  25. W. Pedrycz: From fuzzy data analysis and fuzzy regression to granular fuzzy data analysis. Fuzzy Set Syst. 274 (2015), 12-17.   DOI:10.1201/9781315216737
  26. W. Pedrycz and X. M. Wang: Designing fuzzy sets with the use of the parametric principle of justifiable granularity. IEEE Trans. Fuzzy Syst. 24 (2016), 489-496.   DOI:10.1109/tfuzz.2015.2453393
  27. D. W. Pei: $R_{0}$ implication: characteristics and applications. Fuzzy Set Syst. 131 (2002), 297-302.   DOI:10.1016/s0165-0114(02)00053-2
  28. D. W. Pei: Unified full implication algorithms of fuzzy reasoning. Inform. Sci. 178 (2008), 520-530.   DOI:10.1016/j.ins.2007.09.003
  29. A. Rosenfeld: Distances between fuzzy sets. Pattern Recogn. Lett. 3 (1985), 229-233.   DOI:10.1016/0167-8655(85)90002-9
  30. P. Sarkoci and M. Šabo: Information boundedness principle in fuzzy inference process. Kybernetika 38 (2002), 327-338.   CrossRef
  31. E. Szmidt and J. Kacprzyk: Entropy for intuitionistic fuzzy sets. Fuzzy Set Syst. 118 (2001), 467-477.   DOI:10.1016/s0165-0114(98)00402-3
  32. Y. M. Tang: Differently implicational hierarchical inference algorithm under interval-valued fuzzy environment. In: Proc. 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), Istanbul, pp. 1-8.   DOI:10.1109/fuzz-ieee.2015.7337944
  33. Y. M. Tang and X. P. Liu: Differently implicational universal triple I method of (1, 2, 2) type. Comput. Math. Appl. 59 (2010), 1965-1984.   DOI:10.1016/j.camwa.2009.11.016
  34. Y. M. Tang and F. J. Ren: Universal triple I method for fuzzy reasoning and fuzzy controller. Iran. J. Fuzzy Syst. 10 (2013), 1-24.   DOI:10.1109/fskd.2013.6816179
  35. Y. M. Tang and F. J. Ren: Variable differently implicational algorithm of fuzzy inference. J. Intell. Fuzzy Syst. 28 (2015), 1885-1897.   CrossRef
  36. Y. M. Tang and F. J. Ren: Fuzzy systems based on universal triple I method and their response functions. Int. J. Inf. Tech. Decis. 16 (2017), 443-471.   DOI:10.1142/s0219622014500746
  37. Y. M. Tang, F. J. Ren and Y. X. Chen: Differently implicational $\alpha$-universal triple I restriction method of (1, 2, 2) type. J. Syst. Eng. Electron. 23 (2012), 560-573.   DOI:10.1109/jsee.2012.00070
  38. Y. M. Tang and X. Z. Yang: Symmetric implicational method of fuzzy reasoning. Int. J. Approx. Reason. 54 (2013), 1034-1048.   DOI:10.1016/j.ijar.2013.04.012
  39. Y. M. Tang, X. Z. Yang and F. Yue: Universal triple I method with maximum fuzzy entropy employing R-implications. In: Proc. the 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2013), pp. 125-129.   DOI:10.1109/fskd.2013.6816179
  40. L. X. Wang: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs, NJ, 1997.   CrossRef
  41. G. J. Wang: On the logic foundation of fuzzy reasoning. Inform. Sci. 117 (1999), 47-88.   DOI:10.1016/s0020-0255(98)10103-2
  42. G. J. Wang and L. Fu: Unified forms of triple I method. Comput. Math. Appl. 49 (2005), 923-932.   DOI:10.1016/j.camwa.2004.01.019
  43. G. J. Wang and H. J. Zhou: Introduction to Mathematical Logic and Resolution Principle. Co-published by Science Press and Alpha International Science Ltd., 2009.   CrossRef
  44. X. Y. Yang, F. S. Yu and W. Pedrycz: Long-term forecasting of time series based on linear fuzzy information granules and fuzzy inference system. Int. J. Approx. Reasoning 81 (2017), 1-27.   DOI:10.1016/j.ijar.2016.10.010
  45. L. A. Zadeh: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cyber. 3 (1973), 28-44.   DOI:10.1109/tsmc.1973.5408575