Kybernetika 55 no. 2, 233-251, 2019

Dieudonné-type theorems for lattice group-valued k-triangular set functions

Antonio Boccuto and Xenofon DimitriouDOI: 10.14736/kyb-2019-2-0233

Abstract:

Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for $k$-triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems.

Keywords:

Dieudonné theorem, limit theorem, lattice group, $(D)$-convergence, $k$-triangular set function, $(s)$-bounded set function, Fremlin lemma, Brooks-Jewett theorem, Nikodým boundedness theorem

Classification:

28A12, 28A33, 28B10, 28B15, 40A35, 46G10

References:

  1. K. Atanassov: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg 1999.   CrossRef
  2. G. Barbieri: On Dieudonné's boundedness theorem. Boll. Un. Mat. Ital. II 9 (2009), 343-348.   CrossRef
  3. G. Barbieri: On the Dieudonné theorem. Sci. Math. Japon. 44 (2009), 403-408.   DOI:10.1007/bf00966618
  4. G. Barbieri and A. Boccuto: On extensions of $k$-subadditive lattice group-valued capacities. Italian J. Pure Appl. Math. 37 (2017), 387-408.   CrossRef
  5. G. Barbieri and A. Boccuto: On some properties of $k$-subadditive lattice group-valued capacities. Math. Slovaca 67 (2017), 1387-1408.   DOI:10.1515/ms-2017-0059
  6. A. Boccuto: Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mt. Math. Publ. 8 (1996), 29-42.   CrossRef
  7. A. Boccuto: Integration in Riesz spaces with respect to $(D)$-convergence. Tatra Mt. Math. Publ. 10 (1997), 33-54.   CrossRef
  8. A. Boccuto: Egorov property and weak $\sigma$-distributivity in Riesz spaces. Acta Math. (Nitra) 6 (2003), 61-66.   CrossRef
  9. A. Boccuto and D. Candeloro: Uniform $(s)$-boundedness and convergece results for measures with values in complete $(\ell)$-groups. J. Math. Anal. Appl. 265 (2002), 170-194.   DOI:10.1006/jmaa.2001.7715
  10. A. Boccuto and D. Candeloro: Dieudonné-type theorems for set functions with values in $(\ell)$-groups. Real Anal. Exchange 27 (2002), 473-484.   DOI:10.14321/realanalexch.27.2.0473
  11. A. Boccuto and D. Candeloro: Uniform boundedness theorems in Riesz spaces. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), 369-382.   CrossRef
  12. A. Boccuto and D. Candeloro: Some new results about Brooks-Jewett and Dieudonné-type theorems in $(\ell)$-groups. Kybernetika 46 (2010), 1049-1060.   CrossRef
  13. A. Boccuto and D. Candeloro: Uniform $(s)$-boundedness and regularity for $(\ell)$-group-valued measures. Cent. Eur. J. Math. 9 (2) (2011), 433-440.   DOI:10.2478/s11533-010-0097-1
  14. A. Boccuto and X. Dimitriou: Ideal limit theorems and their equivalence in $(\ell)$-group setting. J. Math. Research 5 (2013), 43-60.   DOI:10.5539/jmr.v5n2p42
  15. A. Boccuto and X. Dimitriou: Limit theorems for topological group-valued maesures. Acta Math. (Nitra) 16 (2013), 37-43.   CrossRef
  16. A. Boccuto and X. Dimitriou: Convergence Theorems for Lattice Group-Valued Measures. Bentham Science Publ., Sharjah 2015.   DOI:10.2174/97816810800931150101
  17. A. Boccuto and X. Dimitriou: Limit theorems for $k$-subadditive lattice group-valued capacities in the filter convergence setting Tatra Mt. Math. Publ. 65 (2016), 1-21.   DOI:10.1515/tmmp-2016-0001
  18. A. Boccuto and X. Dimitriou: Matrix theorems and interchange for lattice group-valued series in the filter convergence setting. Bull. Hellenic Math. Soc. 59 (2016), 39-55.   CrossRef
  19. A. Boccuto and X. Dimitriou: Limit theorems for lattice group-valued $k$-triangular set functions. In: Proc. 33rd PanHellenic Conference on Mathematical Education, Chania 2016, pp. 1-10.   CrossRef
  20. A. Boccuto and X. Dimitriou: Schur-type theorems for $k$-triangular lattice group-valued set functions with respect to filter convergence. Appl. Math. Sci. 11 (2017), 2825-2833.   DOI:10.12988/ams.2017.710298
  21. A. Boccuto and X. Dimitriou: Non-Additive Lattice Group-Valued Set Functions And Limit Theorems. Lambert Acad. Publ., Mauritius 2017.   CrossRef
  22. A. Boccuto and X. Dimitriou: Equivalence between limit theorems for lattice group-valued $k$-triangular set functions. Mediterranean J. Math. 15 (2018), 1-20.   DOI:10.1007/s00009-018-1222-9
  23. A. Boccuto and X. Dimitriou: Filter exhaustiveness and filter limit theorems for $k$-triangular lattice group-valued set functions. Rend. Lincei Mat. Appl. (2019), in press.   CrossRef
  24. A. Boccuto, X. Dimitriou and N. Papanastassiou: Some versions of limit and Dieudonné-type theorems with respect to filter convergence for $(\ell)$-group-valued measures. Cent. Eur. J. Math. 9 (2011), 1298-1311.   DOI:10.2478/s11533-011-0083-2
  25. A. Boccuto, X. Dimitriou and N. Papanastassiou: Uniform boundedness principle, Banach-Steinhaus and approximation theorems for filter convergence in Riesz spaces. In: Proc. International Conference on Topology and its Applications ICTA 2011, Cambridge Sci. Publ. 2012, pp. 45-58.   CrossRef
  26. A. Boccuto, X. Dimitriou and N. Papanastassiou: Schur lemma and limit theorems in lattice groups with respect to filters. Math. Slovaca 62 (2012), 1145-1166.   CrossRef
  27. A. Boccuto, B. Riečan and A. R. Sambucini: On the product of $M$-measures in $(\ell)$-groups. Australian J. Math. Anal. Appl. 7 (2010), 9, 1-8.   CrossRef
  28. A. Boccuto, B. Riečan and M. Vrábelová: Kurzweil-Henstock Integral in Riesz Spaces. Bentham Science Publ., Sharjah 2009.   DOI:10.2174/97816080500311090101
  29. J. K. Brooks and R. V. Chacon: Continuity and compactness of measures. Adv. Math. 37 (1980), 16-26.   DOI:10.1016/0001-8708(80)90023-7
  30. D. Candeloro: On the Vitali-Hahn-Saks, Dieudonné and Nikodým theorems. (In Italian). Rend. Circ. Mat. Palermo Ser. II Suppl. 8 (1985), 439-445.   CrossRef
  31. D. Candeloro and G. Letta: On Vitali-Hahn-Saks and Dieudonné theorems. (In Italian) Rend. Accad. Naz. Sci. XL Mem. Mat. 9 (1985), 203-213.   CrossRef
  32. D. Candeloro and A. R. Sambucini: Filter convergence and decompositions for vector lattice-valued measures. Mediterranean J. Math. 12 (2015), 621-637.   DOI:10.1007/s00009-014-0431-0
  33. P. Cavaliere and P. de Lucia: Regularity and exhaustivity for finitely additive functions. The Dieudonné's convergence theorem. Sci. Math. Japan. 66 (2007), 313-323.   CrossRef
  34. J. Dieudonné: Sur la convergence des suites de mesures de Radon. An. Acad. Brasil. Ci. 23 (1951), 21-38.   CrossRef
  35. I. Dobrakov: On submeasures I. Dissertationes Math. 112 (1974), 5-35.   CrossRef
  36. J. Dugundji: Topology. Allyn and Bacon Inc., Boston 1966.   CrossRef
  37. D. H. Fremlin: A direct proof of the Matthes-Wright integral extension theorem. J. London Math. Soc. 11 (1975), 276-284.   DOI:10.1112/jlms/s2-11.3.276
  38. E. Guariglia: On Dieudonné's boun\-ded\-ness theorem. J. Math. Anal. Appl. 145 (1990), 447-454.   DOI:10.1016/0022-247x(90)90412-9
  39. E. Pap: A generalization of a Dieudonné theorem for $k$-triangular set functions. Acta Sci. Math. 50 (1986), 159-167.   DOI:10.1007/bf01874617
  40. E. Pap: The Vitali-Hahn-Saks Theorems for $k$-triangular set functions. Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 21-32.   CrossRef
  41. E. Pap: Null-Additive Set Functions. Kluwer Acad. Publishers/Ister Science, Dordrecht/Bratislava 1995.   CrossRef
  42. B. Riečan and T. Neubrunn: Integral, Measure, and Ordering. Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava 1997.   DOI:10.1007/978-94-015-8919-2
  43. S. Saeki: The Vitali-Hahn-Saks theorem and measuroids. Proc. Amer. Math. Soc. 114 (1992), 775-782.   DOI:10.1090/s0002-9939-1992-1088446-8
  44. W. Schachermayer: On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Dissertationes Math. 214 (1982), 1-33.   CrossRef
  45. J. D. Stein and Jr.: A uniform-boundedness theorem for measures. Michigan Math. J. 19 (1972), 161-165.   CrossRef
  46. C. Swartz: The Nikodým boundedness Theorem for lattice-valued measures. Arch. Math. 53 (1989), 390-393.   DOI:10.1007/bf01195219
  47. F. Ventriglia: Dieudonné's theorem for non-additive set functions. J. Math. Anal. Appl. 367 (2010), 296-303.   DOI:10.1016/j.jmaa.2010.01.017
  48. B. Z. Vulikh: Introduction to the Theory of Partially Ordered Spaces. Wolters-Noordhoff Sci. Publ., Groningen 1967.   CrossRef