Kybernetika 54 no. 5, 937-957, 2018

Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods

Song ZhengDOI: 10.14736/kyb-2018-5-0937


In this paper, an intermittent control approach with multiple switched periods is proposed for the robust exponential stabilization of uncertain complex-variable delayed nonlinear systems with parameters perturbation, in which the considered complex systems have bounded parametric uncertainties. Based on the Lyapunov stability theory and comparison theorem of differential equations, some stability criteria are established for a class of uncertain complex delayed nonlinear systems with parameters perturbation. Finally, some numerical simulations are given to show the effectiveness and the benefits of the theoretical results.


stabilization, complex delayed system, uncertain, intermittent control, switched


34D06, 34D35, 34C15


  1. M. M. Arefi: Adaptive robust stabilization of Rossler system with time-varying mismatched parameters via scalar input. J. Comput. Nonlinear Dynamics 11 (2016), 041024-6.   DOI:10.1115/1.4033383
  2. S. Cai, P. Zhou and Z. Liu: Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control. Chaos 24 (2014), 033102.   DOI:10.1063/1.4886186
  3. T. W. Carr and I. B. Schwartz: Controlling the unstable steady state in a multimode laser. Phys. Rev. E 51 (1995), 5109-5111.   DOI:10.1103/physreve.51.5109
  4. T. Fang and J. Sun: Stability analysis of complex-valued impulsive system. IET Control Theory Appl. 7 (2013), 1152-1159.   DOI:10.1049/iet-cta.2013.0116
  5. T. Fang and J. Sun: Stability of complex-valued impulsive and switching system and application to the Lü system. Nonlinear Analysis: Hybrid Systems 14 (2014), 38-46.   DOI:10.1016/j.nahs.2014.04.004
  6. A. C. Fowler, J. D. Gibbon and M. J. McGuinness: The complex Lorenz equations. Physica D 4 (1982), 139-163.   DOI:10.1016/0167-2789(82)90057-4
  7. Q. L. Han: New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control. Physics Lett. A 360 (2007), 563-569.   DOI:10.1016/j.physleta.2006.08.076
  8. T. W. Huang, C. D. Li and X. Liu: Synchronization of chaotic systems with delay using intermittent linear state feedback. Chaos 18 (2008), 033122.   DOI:10.1063/1.2967848
  9. C. D. Li, X. F. Liao and T. W. Huang: Exponential stabilization of chaotic systems with delay by periodically intermittent control. Chaos 17 (2007), 013103.   DOI:10.1063/1.2430394
  10. N. Li, H. Sun and Q Zhang: Exponential synchronization of united complex dynamical networks with multi-links via adaptive periodically intermittent control. IET Control Theory Appl. 159 (2013), 1725-1736.   DOI:10.1049/iet-cta.2013.0159
  11. Y. Liang and X. Wang: Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods. Physica A 395 (2014), 434-444.   DOI:10.1016/j.physa.2013.10.002
  12. X. Liu and T. Chen: Synchronization of complex networks via aperiodically intermittent pinning control. IEEE Trans. Automat. Control 60 (2015), 3316-3321.   DOI:10.1109/tac.2015.2416912
  13. X. Liu and T. Chen: Synchronization of nonlinear coupled networks via a periodically intermittent pinning control. IEEE Trans. Neural Networks Learning Systems 26 (2015), 113-126.   CrossRef
  14. J. Lu, D. W. C. Ho and J. Cao: A unified synchronization criterion for impulsive dynamical networks. Automatica 46 (2010), 1215-1221.   DOI:10.1016/j.automatica.2010.04.005
  15. C. Luo and X. Wang: Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dynamics 71 (2013), 241-257.   DOI:10.1007/s11071-012-0656-z
  16. E. E. Mahmoud: Dynamics and synchronization of new hyperchaotic complex Lorenz system. Math. Computer Modelling 55 (2012), 1951-1962.   DOI:10.1016/j.mcm.2011.11.053
  17. G. M. Mahmoud, E. E. Mahmoud and A. A. Arafa: On modified time delay hyperchaotic complex Lü system. Nonlinear Dynamics 80 (2015), 855-869.   DOI:10.1007/s11071-015-1912-9
  18. G. M. Mahmoud, T. Bountis and E. E. Mahmoud: Active control and global synchronization for complex Chen and Lü systems. Int. J. Bifurcation Chaos 17 (2007), 4295-4308.   DOI:10.1142/s0218127407019962
  19. Ö. Morgül: On the stability of delayed feedback controllers. Phys. Lett. A 314 (2003), 278-285.   DOI:10.1016/s0375-9601(03)00866-1
  20. C. Z. Ning and H. Haken: Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations. Phys. Rev. A 41 (1990), 3826-3837.   DOI:10.1103/physreva.41.3826
  21. E. Ott, C. Grebogi and J. Yorke: Controlling chaos. Phys. Rev. Lett. 64 (1990), 1196.   DOI:10.1103/physrevlett.64.1196
  22. L. M. Pecora and T. L. Carroll: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824.   DOI:10.1103/physrevlett.64.821
  23. J. Qiu, L. Cheng, X, Chen, J. Lu and H. He: Semi-periodically intermittent control for synchronization of switched complex networks:a mode-dependent average dwell time approach. Nonlinear Dynamics {\mi83} (2016), 1757-1771.   DOI:10.1007/s11071-015-2445-y
  24. J. Starrett: Control of chaos by occasional bang-bang. Phys. Rev. E 67 (2003), 036203.   CrossRef
  25. W. Sun, S. Wang, G. Wang and Y. Wu: Lag synchronization via pinning control between two coupled networks. Nonlinear Dynamics 79 (2015), 2659-2666.   DOI:10.1007/s11071-014-1838-7
  26. X. Wang and Y. He: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372 (2008), 435-441.   DOI:10.1016/j.physleta.2007.07.053
  27. W. Xia and J. Cao: Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 19 (2009), 013120.   DOI:10.1063/1.3071933
  28. Z. Yang and D. Xu: Stability analysis and design of impulsive control systems with time delay. IEEE Trans. Automat. Control 52 (2007), 1448-1454.   DOI:10.1109/tac.2007.902748
  29. D. W. Zhang, Q. L. Han and X. C. Jia: Network-based output tracking control for a class of T-S fuzzy systems that can not be stabilized by nondelayed output feedback controllers. IEEE Trans. Cybernet. 45 (2015), 1511-1524.   DOI:10.1109/tcyb.2014.2354421
  30. D. W. Zhang, Q. L. Han and X. C. Jia: Network-based output tracking control for T-S fuzzy systems using an event-triggered communication scheme. Fuzzy Sets Systems 273 (2015), 26-48.   DOI:10.1016/j.fss.2014.12.015
  31. S. Zheng: Adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling. Nonlinear Dynamics 67 (2012), 2621-2630.   DOI:10.1007/s11071-011-0175-3
  32. S. Zheng: Parameter identification and adaptive impulsive synchronization of uncertain complex-variable chaotic systems. Nonlinear Dynamics 74 (2013), 957-967.   DOI:10.1007/s11071-013-1015-4
  33. S. Zheng: Stability of uncertain impulsive complex-variable chaotic systems with time-varying delays. ISA Trans. 58 (2015), 20-26.   DOI:10.1016/j.isatra.2015.05.016
  34. S. Zheng: Synchronization analysis of time delay complex-variable chaotic systems with discontinuous coupling. J. Franklin Inst. 353 (2016), 1460-1477.   DOI:10.1016/j.jfranklin.2016.02.006
  35. S. Zheng: Further Results on the impulsive synchronization of uncertain complex-variable chaotic delayed systems. Complexity 21 (2016), 131-142.   DOI:10.1002/cplx.21641
  36. M. Zochowski: Intermittent dynamical control. Physica D 145 (2000), 181-190.   DOI:10.1016/s0167-2789(00)00112-3