Kybernetika 54 no. 5, 1049-1070, 2018

Robust optimal PID controller design for attitude stabilization of flexible spacecraft

Chutiphon PukdeboonDOI: 10.14736/kyb-2018-5-1049

Abstract:

This paper presents a novel robust optimal control approach for attitude stabilization of a flexible spacecraft in the presence of external disturbances. An optimal control law is formulated by using concepts of inverse optimal control, proportional-integral-derivative control and a control Lyapunov function. A modified extended state observer is used to compensate for the total disturbances. High-gain and second order sliding mode algorithms are merged to obtain the proposed modified extended state observer. The second method of Lyapunov is used to demonstrate its properties including the convergence rate and ultimate boundedness of the estimation error. The proposed controller can stabilize the attitude control system and minimize a cost functional. Moreover, this controller achieves robustness against bounded external disturbances and the disturbances caused by the elastic vibration of flexible appendages. Numerical simulations are provided to demonstrate the performance of the developed controller.

Keywords:

extended state observer, flexible spacecraft, robust optimal control, inverse optimal control, control Lyapunov function

Classification:

93C10, 93C95, 93D15

References:

  1. S. Bharadwaj, M. Osipchuk, K. D. Mease and F. C. Park: Geometry and inverse optimality in global attitude stabilization. J. Guidance Control Dynamic 21 (1998), 930-939.   DOI:10.2514/2.4327
  2. J. R Cloutier: State-Dependent Riccati equation techniques: An overview. In: Proc. American Control Conference, Albuquerque 1997, pp. 932-936.   DOI:10.1109/acc.1997.609663
  3. S. DiGennaro: Output stabilization of flexible spacecraft with active vibration supression. IEEE Aerop. Electron. Syst. Mag. 39 (2003), 747-759.   DOI:10.1109/taes.2003.1238733
  4. J. Erdong and S. Zhaowei: Passivity-based control for a flexible spacecraft in the presence of disturbance. Int. J. Non-linear Mechanics 45 (2010), 348-356.   DOI:10.1016/j.ijnonlinmec.2009.12.008
  5. R. A. Freeman and P. V. Kokotović: Inverse optimality in robust stablilzation. SIAM J. Control Optim. 34 (1996), 1365-1391.   DOI:10.1137/s0363012993258732
  6. B. Z. Guo and Z. Zhao: On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst. Control Lett. 60 (2011), 420-430.   DOI:10.1016/j.sysconle.2011.03.008
  7. J. Han and Y. Huang: Analysis and design for the second order nonlinear continuous extended states observer. Chinese Sci. Bull. 45 (2000), 1938-1944.   DOI:10.1007/bf02909682
  8. J. Han: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56 (2009), 900-906.   DOI:10.1109/tie.2008.2011621
  9. N. M Horri, P. Palmer and M. Roberts: Gain scheduled inverse optimal satellite attitude control. IEEE Trans. Aerospace Electron. Systems 48 (2012), 2437-2457.   DOI:10.1109/taes.2012.6237602
  10. Q. Hu: Sliding mode attitude control with $L_{2}-$gain performance and vibration reduction of flexible spacecraft with actuator dynamics. Acta Astronautica 67 (2010), 572-583.   DOI:10.1016/j.actaastro.2010.04.018
  11. Q. Hu and G. Ma: Varaible structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerospace Science Technol. 9 (2005), 307-317.   DOI:10.1016/j.ast.2005.02.001
  12. H. K. Khalil: Nonlinear Systems. Prentice-Hall Press, 1996.   CrossRef
  13. M. Krstić and P. V. Kokotović: Control Lyapunov functions for adaptive nonlinear stabilization. Systems Control Lett. 26 (1995), 17-23.   DOI:10.1016/0167-6911(94)00107-7
  14. M. Krstić and Z. H. Li: Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Trans. Automat. Control 43 (1998), 336-350.   DOI:10.1109/9.661589
  15. M. Krstić and M. P. Tsiotras: Inverse optimal stabilization of a rigid spacecraft. IEEE Trans. Automat. Control 44 (1999), 1042-1045.   DOI:10.1109/9.763225
  16. K. Lu, Y. Xia and M. FU: Controller design for rigid spacecraft attitude tracking with actuator saturation. Inform. Sci. 220 (2013), 343-366.   DOI:10.1016/j.ins.2012.07.039
  17. W. Luo, Y. C. Chung and K. V. Ling: Inverse optimal adaptive control for attitude tracking spacecraft. IEEE Trans. Automat. Control 50 (2005), 1639-1654.   DOI:10.1109/tac.2005.858694
  18. Y. Park: Robust and optimal attitude stabilization of spacecraft with external disturbances. Aerospace Sci. Technol. 9 (2005), 253-259.   DOI:10.1016/j.ast.2005.01.002
  19. Y. Park: Inverse optimal and robust nonlinear attitude control of rigid spacecraft. Aerospace Sci. Technol. 28 (2013), 257-265.   DOI:10.1016/j.ast.2012.11.006
  20. J. A. Primb, V. Nevistić and J. C. Doyle: Nonlinear optimal control : a control Lyapunov function and receding horizon perspective. Asian J. Control 1 (1999), 14-24.   DOI:10.1111/j.1934-6093.1999.tb00002.x
  21. C. Pukdeboon and A. S. I. Zinober: Control Lyapunov function optimal sliding mode controllers for attitude tracking of spacecraft. J. Franklin Inst. 349 (2012), 456-475.   DOI:10.1016/j.jfranklin.2011.07.006
  22. C. Pukdeboon: Optimal sliding mode controllers for attitude stabilization of flexible spacecraft. Math. Problems Engrg. 2011 (2011) Article ID 863092, 1-20.   DOI:10.1155/2011/863092
  23. R. Sepulchre, R. A. Freeman and P. V. Kokotović: Constructive Nonlinear Control. Springer-Verlag, New York 1997.   DOI:10.1007/978-1-4471-0967-9
  24. R. Sharma and A. Tewari: Optimal nonlinear tracking of spacecraft attitude maneuvers. IEEE Trans. Control Systems Technol. 12 (2004), 677-682.   DOI:10.1109/tcst.2004.825060
  25. M. D. Shuster: A survey of attitude representations. J. Astronaut. Sci. 41 (1993), 439-517.   CrossRef
  26. E. D. Sontag: A universal construction of Artstein's theorem on bonlinear stabilization. Systems Control Lett. 13 (1989), 117-123.   DOI:10.1016/0167-6911(89)90028-5
  27. E. D. Sontag: Mathematical Control Theory, Deterministic Finite Dimensional Systems. Second edition. Springer-Verlag, New York 1998.   DOI:10.1007/978-1-4612-0577-7
  28. D. T. Stansbery and J. R Cloutier: Position and attitude control of a spacecraft using the state-dependent Riccati equation techniques. In: Proc. American Control Conference, Chicago 2000.   DOI:10.1109/acc.2000.879525
  29. M. Xin and S. N. Balakrishnan: State dependent Riccati equation based spacecraft attitude control. In: Proc. 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno 2002.   DOI:10.2514/6.2002-1071
  30. M. Xin, S. N. Balakrishnan and D. T. Stansbery: Spacecraft position and attitude control with $\theta-D$ technique. In: Proc. 42th AAIA Aerospace Sciences Meeting and Exhibit, Reno 2004.   DOI:10.2514/6.2004-540
  31. M. Xin and H. Pan: Nonlinear optimal control of spacecraft approaching a tumbling target. Aerospace Sci. Technol. 15 (2011), 79-89.   DOI:10.1016/j.ast.2010.05.009
  32. V. I. Utkin: Sliding Modes in Control and Optimization. Springer-Verlag, Berlin 1992.   CrossRef
  33. J. R. Wertz: Spacecraft Attitude Determination and Control. Kluwer Academic, Dordrecht, London 1978.   CrossRef