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ROBUST OPTIMAL PID CONTROLLER DESIGN
FOR ATTITUDE STABILIZATION
OF FLEXIBLE SPACECRAFT

Chutiphon Pukdeboon

This paper presents a novel robust optimal control approach for attitude stabilization of a
flexible spacecraft in the presence of external disturbances. An optimal control law is formu-
lated by using concepts of inverse optimal control, proportional-integral-derivative control and
a control Lyapunov function. A modified extended state observer is used to compensate for the
total disturbances. High-gain and second order sliding mode algorithms are merged to obtain
the proposed modified extended state observer. The second method of Lyapunov is used to
demonstrate its properties including the convergence rate and ultimate boundedness of the esti-
mation error. The proposed controller can stabilize the attitude control system and minimize a
cost functional. Moreover, this controller achieves robustness against bounded external distur-
bances and the disturbances caused by the elastic vibration of flexible appendages. Numerical
simulations are provided to demonstrate the performance of the developed controller.

Keywords: robust optimal control, inverse optimal control, control Lyapunov function,
extended state observer, flexible spacecraft
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1. INTRODUCTION

Attitude control methodologies for spacecraft are of prime importance in communication,
navigation, remote sensing, and other space-related missions. The problem of optimal
attitude control has increased dramatically among researchers (see e. g., [1, 9, 18]). Op-
timal attitude control problem involves the design of a stabilizing feedback control law
which is optimal with respect to a given cost functional. Various nonlinear optimal
control techniques have been increasing considered for wide range of control system
applications. Optimal and adaptive quaternion feedback [24] has also used for large
angle maneuvers of spacecraft. The state dependent Riccati equation (SDRE) tech-
nique is a suboptimal control method which is easy to implement [2]. Stansbery and
Clourtier [28] developed a position and attitude controller using the SDRE method. The
SDRE and a neural network were integrated by Xin and Balakrishnan [29] to develop
a robust optimal attitude controller for spacecraft in the presence an uncertain moment
of inertia. However, the main drawback of SDRE method is the task of solving the
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Riccati equation repetitively at every integration step. It is a formidable task to use
the SDRE method if the system order is higher. Xin and his colleagues [30, 31] have
applied the θ −D technique to produce a suboptimal controller for integrated position
and attitude maneuvers.

An inverse optimal control technique is an alternative approach that provides an
optimal controller without actually solving the Hamilton-Jacobi-Bellman (HJB) equa-
tion [5, 14, 23]. Inverse optimal control approaches were first addressed by Krstic and
Tsiotras [15] to design optimal attitude control laws. Park [19] presented an inverse
optimal and robust attitude control law for a rigid spacecraft. Luo et al. [17] proposed
adaptive H∞ inverse optimal control method to solve the attitude tracking control prob-
lem of spacecraft.

In practical situation, the model parameters of the spacecraft may be uncertain and
the spacecraft is always affected by external disturbances. A potential method often
used to compensate for uncertainties and disturbances is a control method based on an
extended state observer (ESO) [6, 8]. ESO has been widely applied to handle various
kinds of engineering control problems such as flight control and chemical process control.
In [16] the ESO based disturbance rejection control approach has been used for attitude
tracking of a rigid spacecraft. However, this controller did not consider the vibration
effect of flexible appendages in the attitude control design.

An optimal sliding mode control (OSMC) is one of effective control methods to design
a robust optimal controller. SMC is well known for nonlinear robust control method to
deal with a system with modelling uncertainty and an external disturbance problem
[32]. SMC has been employed in [3, 4, 11] to design controllers for attitude motion of
flexible spacecraft. Pukdeboon and Zinober [21] have used the OSMC technique to solve
the optimal control problem for spacecraft attitude tracking system. Later, OSMC has
been used in [22] to develop robust optimal attitude controllers for a flexible spacecraft.

However, the optimal controllers mentioned above have some disadvantages. The
SDRE controller usually provides only local asymptotic stability whereas the main draw-
back of the optimal Lyapunov approach is that it is difficult to find a Lyapunov function
to satisfy the partial differential equation derived from the Krasovskii theorem.

In this paper, a novel robust optimal control scheme for flexible spacecraft is designed
in the presence of external disturbances to achieve robust optimal attitude stabiliza-
tion. A new inverse optimal controller for the attitude stabilizing systems is constructed
based on Sontag-type formula [26, 27], proportional-integral-derivative (PID) control
and a control Lyapunov function (CLF) [13, 20]. Then, the total disturbance including
the vibration of flexible appendages and external disturbance is estimated by a modified
version of the traditional ESO in [7].

In this paper the ultimate boundedness of estimation error of an adapted ESO is
guaranteed by using Lyapunov’s theorem. The proposed new attitude controller for
flexible spacecraft enforces attitude motion, robustness, and optimality with respect to
a family of cost functionals and achieves disturbance rejection.

The main contributions of this paper include:

(I) An inverse optimal PID control method for flexible spacecraft attitude regulation
maneuvers is proposed for the first time in this paper. A new CLF for the spacecraft
motion system is constructed by applying the backstepping method.



Robust optimal PID controller for flexible spacecraft 1051

(II) A new disturbance observer is designed based on the high gain second-order slid-
ing mode control algorithm. The stability of the proposed compensator is analyzed by
the Lyapunov framework.

This paper is organized as follows. Section 2 introduces the basic of the inverse opti-
mality approach which is required for the following discussion. In Section 3 we formulate
the dynamics and kinematics of a flexible spacecraft [3, 33]. The problem statement and
control objective are also provided. Section 4 proposes an inverse optimal PID control
design to achieve the asymptotic convergence of error system states to zero. In Section
5, a modified ESO method is developed to estimate the total disturbance including the
vibration of flexible appendages and external disturbances. The ultimate boundedbess
of the estimation error is guaranteed using Layapunov’s theorem. Numerical results are
given in Section 6 to illustrate the performance of the developed control law. In Section
7, we present conclusions.

2. INVERSE OPTIMAL CONTROLLER DESIGN

We consider nonlinear dynamic systems affine in the control variable

ẋ = f(x) + g(x)u (1)

where x ∈ Rn is a state vector, u ∈ Rm denotes the input vector, f : Rn → Rn is
a continuous function with f(0) = 0, and g : Rn → Rn×m represents a matrix-valued
function.

The aim is to demonstrate that a state feedback u = k(x) is optimal with respect to
a cost functional

I =

∫ ∞
0

L(x, u) dt =

∫ ∞
0

(l(x) + uTR(x)u) dt, (2)

where l(x) is a positive semi-definite loss function and R : Rn → Rn×n is a symmetric
positive definite weight. The term L(x, u) is required to be determined from the feedback
k(x) and a Lyapunov function V (x) associated with the closed-loop system 1.

Let us denote LfV (x) and LgV (x) as the Lie derivatives of V along the solution of
system (1). It should be noted that the Lie derivative of V with respect to h : Rn → Rn
is defined as LhV (x) = ∂V

∂x h.
A smooth positive definite function V (x) is called as a control Lyapunov function

(CLF) of the system (1) if it satisfies the following property

LgV = 0 =⇒ LfV < 0, ∀x 6= 0, (3)

Based on the Sontag’s formula [26] and a CLF V (x), a finite horizon optimal controller
with integrated cost given in (2) is provided by

κ∗(x) = −β(x)(LgV )T (4)

with

β(x) =

 c0 +
a(x) +

√
a(x)2 + (b(x)T b(x))2

b(x)T b(x)
if ‖b(x)‖ 6= 0

c0 if ‖b(x)‖ = 0

(5)
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where c0 is a positive constant, a(x) = LfV and b(x) = (LgV )T .

Remark 2.1. Based on CLFs, and inverse optimal control method, a stabilizing feed-
back controller is designed first and then shown to be optimal with respect to a cost
functional that imposed penalties on the state and control input.

3. NONLINEAR MODEL OF SPACECRAFT AND PROBLEM FORMULATION

3.1. Kinematic equation

We now briefly explain the use of quaternions for description of the attitude. We define
the quaternion Q = [q0 qT ]T ∈ R × R3 with q = [q1 q2 q3]T ∈ R3 The kinematic
equation for the attitude can then be expressed as (see, [33])

Q̇ =
1

2

[
−qT
T (Q)

]
ω, (6)

where T (Q) = q× + q0I3 with I3 the 3× 3 identity matrix. Note that the scalar q0 and
the three-dimensional vector q must satisfy the condition

qT q + q2
0 = 1. (7)

3.2. Flexible spacecraft dynamics

The equation governing a flexible spacecraft is expressed as [3]

Jω̇ + δT η̈ = −ω×
(
Jω + δT η̇

)
+ u+ d (8)

η̈ + Cη̇ +Kη = −δω̇, (9)

where J =∈ R3×3 denotes the symmetric inertia matrix of the whole spacecraft, δ ∈
RN×3 is the coupling matrix between the central rigid body and the flexible attachments
with N being the mode number, η ∈ RN is the modal displacement. u ∈ R3 denotes
the control torques and d ∈ R3 represents the external disturbances. The stiffness K
and the damping C are defined as

K = diag
(
ω2
ni, i = 1, 2, . . . , N

)
(10)

C = diag (2ζiωni, i = 1, 2, . . . , N) (11)

with damping ζi and natural frequency ωni.
Considering (8), let us define an auxiliary variable

ϑ = δω + η̇. (12)

The first time derivative of ϑ is

ϑ̇ = δω̇ + η̈

= −Cϑ+ Cδω −Kη. (13)
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Substituting (13) into (8), one can obtain

(J − δT δ)ω̇ = −ω×Jω + u(t) + ξ(t) + d(t), (14)

where ξ(t) represents the total coupling effect term defined by

ξ(t) = δT
[
K C

] [η
ϑ

]
− δTCδω − ω×δT (ϑ− δω). (15)

Now, we have obtain the dynamic equation as

(J − δT δ)ω̇ = −ω×Jω + u+ d̄ (16)

where d̄ = ξ(t) + d(t) denotes the total disturbance including coupling effect term and
bounded external disturbance. Letting J0 = J − δT δ, (16) becomes

ω̇ = −J−1
0 ω×Jω + J−1

0 u+ d̃(t), (17)

where d̃(t) = J−1
0 d̄(t).

To develop our robust optimal control method, the following assumption is required.

Assumption 3.1. The ith component of the total disturbance d̃(t) in (50) and its first

time derivative
˙̃
d(t) are unknown but bounded, i. e.

max(|d̃i(t)|) ≤ D̄1 and max(| ˙̃di(t)|) ≤ D̄2, i = 1, 2, 3,

where D̄1 and D̄2 are positive constants.

3.3. Problem formulation

The attitude stabilization of a flexible spacecraft is considered. The control objective
is to design a robust optimal controller that stabilizes the attitude motion. Thus, it is
required to design a state feedback controller that minimizes the cost functional (2) and
forces the states of the closed-loop system consisting of equations (6) and (13) to the
equilibrium when t→∞. This implies that

lim
t→∞

q(t) = 0, lim
t→∞

q0(t) = 1, and lim
t→∞

ω(t) = 0. (18)

4. OPTIMAL PID CONTROLLER DESIGN

This section presents an inverse optimal PID nonlinear controller design for solving the
attitude stabilization problem of a flexible spacecraft. The basic concepts of inverse
optimal control approach and CLF are employed. In this section, the backstepping
technique is used to find a CLF associated with the attitude stabilization system and
PID methods are used to solve the optimal control problem.
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4.1. Backstepping method

We suppose that ω is the virtual input to the subsystem (6) and defined the stabilizing
function such that

α = −KP q −KIε, (19)

where KP and KI are the symmetric and positive definite matrices. In (19), ε is the
integral variable defined as

ε =

∫ t

0

q(τ) dτ. (20)

We now define the error between the state ω and the desired control α such that

z = ω − α. (21)

Using (21), (6) becomes

Q̇ =
1

2

[
−qT
T (Q)

]
(z + α). (22)

Also, the first time derivative of z is obtained as

ż = J−1
0

(
− (z + α)×J(z + α)

)
+

1

2
KPT (Q)(z + α)

+KIq + J−1
0 u+ J−1

0 d̄. (23)

Consider the following candidate Lyapunov function

V1 = γqT q + γ(q0 − 1)2 +
γ

2
εTKIε. (24)

The time derivative of (24) along the trajectories of the closed-loop system becomes

V̇1 = γqT
(
T (Q)(z + α)

)
− γqT (q0 − 1)(z + α) + γεTKIq

= −γqTKP q + γqT z (25)

From (25), obviously q → 0 and q0 → 1 as t→∞ when z = 0.

Remark 4.1. In this paper, using backstepping method, the variable z consists of ω,
q and ε. From (6), one can have ω = 2T (Q)−1q̇. This implies that the term ω already
presents the derivative term of q, so the term KD q̇ have been omitted in this case. In
this case, q̇ is implicitly included into the relation.

Next, we first propose an inverse optimal controller for the flexible spacecraft motion
equations in the absence of uncertainties and disturbances.
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4.2. Inverse optimal PID control

Letting x = [εT qT zT ]T , the flexible spacecraft motion equations (22) and (23) with
the integral variable ε can be rewritten as

ẋ = F (x) +B(x)u+D, (26)

where

F (x) =

 q
1
2T (Q)(z + α)
Ξ(q0, q, α, z)

 (27)

B(x) =

 03×3

03×3

J−1
0

 and D = d̃, (28)

where

Ξ(q0, q, α, z) = −J−1
0 (z + α)×J(z + α) +

1

2
KPT (Q)(z + α)

+KIq.

In the absence of the disturbance D, we now propose the following inverse optimal
controller

u = κγ(x) = −γλ(x)z, (29)

with λ(x) being a function defined as

λ(x) =

 1 +

[
ψ +

√
ψ2 + (zT z)2

‖z‖2

]
zT , ‖z‖ 6= 0

1, ‖z‖ = 0,

(30)

where

ψ(x) = zT
(

(γI3 + J0KI)q + µz − (z + α)×(J(z + α) +
1

2
J0KPT (Q)(z + α)

)
with γ and µ begin positive constants. In the following theorem, we show that our
chosen Lyapunov function is a CLF for the system (26).

Theorem 4.2. If the following function V2 is expressed as,

V2 = V1 +
1

2
zTJ0z, (31)

then V2 is a CLF for the system (26).

P r o o f . Since J0 is symmetric positive definite, we can write V2 as

V2 = xTΩx+ γ(q0 − 1)2 (32)
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Ω =
1

2

 γKI 03×3 03×3

03×3 γI3 03×3

03×3 03×3 J0

 (33)

with 0n×n being the n× n zero matrix. If γ > 0 is chosen, then this ensures that V2 is
positive definite.

Computing the time-derivative of V2 along the trajectories of the closed-loop system
in equations (22) and (23), we obtain

V̇2 = V̇1 + zTJ0ż

= −γqTKP q + γqT z + zT
(
− (α+ z)×J(α+ z)

+
1

2
J0KP (q0I3 + q×)(z + α) + J0KIq + u

)
= −γqTKP q − µzT z + zT

(
(γI3 + J0KI)q + µz + u

−(α+ z)×J(α+ z) +
1

2
J0KP (q0I3 + q×)(z + α)

)
= −ϑTΠϑ+ zT

(
(γI3 + J0KI)q + µz

−(α+ z)×J(α+ z) +
1

2
J0KP (q0I3 + q×)(z + α)

)
+zTu, (34)

where µ is a positive constant,

Π =

[
γKP 03×3

03×3 µI3

]
and ϑ =

[
q
z

]
. (35)

We know that V̇2 can be written as

V̇2 = LfV2 + LgV2u. (36)

Comparing (36) to (34), one obtains

LgV2 = zT (37)

where 01×3 is the 1× 3 zero matrix.
If LgV2 = 01×3 then zT = 01×3 Therefore, when LgV2 = 01×3, we have

LfV2 = V̇2

= −ϑTΠϑ (38)

Evidently LfV2 < 0, ∀x 6= 0. Therefore, the function V2 is a CLF for the system (26).
�

Consider the system (26) in the absence of disturbance vector D. Then the dynamic
feedback controller u in (29) stabilizes the system (26).

Next, a new optimal control law is developed. We show that the proposed feedback
law can stabilize the spacecraft system (26) and minimize the cost functional (39).
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Theorem 4.3. The feedback control law (29) with γ ≥ 1 solves the inverse optimal
assignment problem for the attitude control system (26) by stabilizing the spacecraft
system (26) and minimizing the cost functional

La = lim
T→∞

[
V2(x(T )) +

∫ T

0

(l(x,
γ

2
) +

1

γ
uTRu) dt

]
, (39)

where l(x) is defined by

l(x) = −zT
[
(γI3 + J0KI)q + µz − (α+ z)×J(α+ z)

+
1

2
J0KP (q0I3 + q×)(α+ z)

]
+ ϑTΠϑ

+zTR−1z. (40)

P r o o f . The proof consists of two parts. For the first part,it is required to ensure
that for γ ≥ 1

2 , the controller u = κγ globally asymptotically stabilizes the origin of the
system (26). Consider the smooth positive-definite radially unbounded function V2(x)
defined in (31) as the Lyapunov function. The derivative of V2(x) along the system
trajectories of the system (26) is

V̇2 = LfV2 + LBV2κγ

= ψ(x)− γλ(x)zT z. (41)

Since V2(x) is a CLF for the system, when z = 0, one obtains V̇2(x) < 0 for all x 6= 0.
When ψ(x) < 0, it is obvious that V̇2 < 0 is obtained. Suppose z 6= 0 and ψ(x) ≥ 0. We
can rewrite V̇2 as

V̇2(x) = (1− γ)ψ(x)− γ
√
ψ2 + (zT z)2 − γzT z

=
(1− 2γ)ψ(x)2 − γ2(zT z)2

(1− γ)ψ(x) + γ
√
ψ2 + (zT z)2

− γzT z. (42)

Obviously, V̇2 < 0 is obtained for all γ ≥ 1
2 . the controller u = κγ(x) globally asymp-

totically stabilizes the origin of the system (26).

For the second part, it is required that u = κγ(x) is an inverse optimal control.

Setting l(x, γ) = −V̇2, one obtains l(x, γ) > 0 for all x 6= 0. We consider an intermediate
cost functional given by

I0(x) =

∫ T

0

(u+ γλ(x)z)TR(x)(u+ γλ(x)z) dt, γ ≥ 1. (43)

Evidently, an optimal control u∗ = −γλ(x)z minimizes I0. Let 2λ(x)R(x) = In. Using



1058 C. PUKDEBOON

the fact that uTLBV2 = V̇2(x)− LfV2, one obtains

I0(x) =

∫ T

0

(uTR(x)u+ γ2λ(x)2zTR(x)z + 2γλ(x)uTR(x)z) dt

=

∫ T

0

(uTR(x)u+
γ2

4
zTR(x)−1z + γ(V̇2(x)− LfV2)) dt

=

∫ T

0

(uTR(x)u− γ
[
ψ(x) + (

γ

2
λ(x)z)T z

]
+ γV̇2(x)) dt

=

∫ T

0

(γl(x,
γ

2
) + uTR(x)u+ γV̇2(x)) dt. (44)

Since
∫ T

0
V̇2(x) dt = V2(x(T )) − V2(x(0)) and the optimal value function I∗0 is equal to

zero, one has

V2(x(0)) =
1

γ

∫ T

0

L(x, u) dt+ V2(x(T )), (45)

where L(x, u) = γl(x, γ2 )+uTR(x)u. Thus, u∗ = κγ(x) is an optimal control for following
functional

I =

∫ T

0

(l(x,
γ

2
) +

1

γ
uTR(x)u) dt+ V2(x(T )), γ ≥ 1. (46)

Because V2(x(T )) → 0 as T → ∞, V2(x(0)) =
∫∞

0
(γl(x, γ2 ) + 1

γ (u∗)TR(x)u∗) dt.

Thus, I∗0 = V2(x(0)). This completes the proof. �

5. MODIFIED EXTENDED STATE OBSERVER

Because of the great advances in nonlinear control theory, the observer-based controller
has been considered as one of the most common approaches in industrial applications.
The extended state observer (ESO) presented in [6, 8] is a very useful method that
has high efficiency in accomplishing nonlinear dynamic estimation. In this section the
modified version of the conventional ESO is designed and the finite-time stability of the
proposed ESO system is investigated using the strict Lyapunov function.

We can rewrite (23) as

ż = f +Gu+ d̃, (47)

where

f = Ξ(q0, q, α, z), G = J−1
0 and d̃ = Gd̄. (48)

From (47) the proposed robust optimal PID control is designed as

u = u∗ −G−1d̂, (49)

where d̂ is the estimate of the disturbance vector d̃. Clearly, from (49) if d̂ → d̃, then
the control law u is the same as u∗ presented in Section 5.

Using the idea of ESO, a nonlinear ESO can be designed for estimating the distur-
bances D. We add an extended state χ to the state equations to represent the total



Robust optimal PID controller for flexible spacecraft 1059

disturbances d̄. The system (47) then becomes

ż = f +Gu+ d̃

χ̇ = g(t), (50)

where the function g(t) is the estimated derivative of the disturbances d̃.

It is not necessary the known the value of ḡ since we can make the ultimate bounded-
ness of the estimation error sufficiently small by proper selecting the control parameters.

Then the modified ESO for the system (47) is proposed to be as follows

E1 = Z1 − z
Ż1 = Z2 + f +Gu− ε−1λ1E1

Ż2 = −g(t)− ε−1λ2signα(E1)− ε−1λ3E1

−ε−1λ4sign(E1), (51)

where E1 is the estimation error of the ESO, Z1 and Z2 are the observer output, and
λ1 = diag(λ11, λ12, λ13), λ2 = diag(λ21, λ22, λ23), λ3 = diag(λ31, λ32, λ33) and λ4 =
diag(λ41, λ42, λ43) with λ1i > 0, λ2i > 0, λ3i > 0 and λ4i > 0 are the observer gains.
Here, the function sign(E1) and signα(E1) are defined as

sign(E1) =

 sign(E11)
sign(E12)
sign(E13)


and

signα(E1) =

 |E11|αsign(E11)
|E12|αsign(E12)
|E13|αsign(E13)


with α ∈ (0, 1).

Note that the proposed modified ESO presented by (51) has been presented to esti-
mate the total disturbance. The total disturbance is composed of the vibration effect
and external disturbance.

Theorem 5.1. Let Assumption 3.1 hold. Consider the system (50) with the adaptive
ESO (51). Then there exist positive observer gains λ1i, λ2i, λ3i and λ4i (i = 1, 2, 3) and
α ∈ (0, 1) such that the ultimate boundedness of the estimation error is ensured.

P r o o f . Letting e1 = E1 and e2 = Z2 − d̃ the observer error dynamics can be trans-
formed to the scalar form (i = 1, 2, 3) as

ė1i = ε−1
(
e2i − λ1ie1i

)
ė2i = −gi(t)− ε−1λ2i|e1i|αsign(e1i)− ε−1λ3ie1i

−ε−1λ4isign(e1i). (52)
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We define ν = [|e1i|
α+1
2 sign(e1i) |e1i|

1
2 e1i e2i]

T . To prove the stability, we select the
Lyapunov function

V̇3 =
1

2
νTΠν, (53)

where

Π1 =
1

2


4λ2i

α+1 0 0 0

0 4λ4i 0 0
0 0 2λ3i + λ2

1i λ1i

0 0 λ1i 2

.


Taking the time derivative to both sides of (53), we obtain

V̇3 = 2λ2i|e1i|αsign(e1)ė1i + (λ3i +
1

2
λ2

1i)e1iė1i

+2e2iė2i − λ1ie2iė1i − λ1ie1iė2i + 2λ4isign(e1)ė1i

= 2λ2i|e1i|αsign(e1)ε−1(e2i − λ1ie1i) + (λ3i +
1

2
λ2

1i)e1i

×ε−1(e2i − λ1ie1i) + 2e2iε
−1

(
− λ2i|e1i|αsign(e1)

−λ3ie1i − λ4isign(e1)− εg(t)

)
−ε−1λ1ie2i(e2i − ε−1λ1ie1i) + 2λ4isign(e1i)

×ε−1(e2i − λ1ie1i)− λ1ie1iε
−1

(
− λ2i|e1i|αsign(e1i)

−λ3ie1i − λ4isign(e1)− εg(t)

)
, (54)

which can be further written as

V̇3 = ε−1
(
− λ1iλ2i|e1i|α+1 − (λ3

1i + λ1iλ3i)e
2
1i − λ2

1ie1ie2i

−λ1ie
2
2i + λ2

1i − λ1iλ4i|e1i|
)

+ λ1ie1igi(t)

−2e2igi(t) (55)

After some manipulation, the derivative of V3 can be written as follows:

V̇3 = −ε−1νTΠ2ν + %ν (56)

where

Π2 = λ1i


λ2i 0 0 0
0 λ4i 0 0
0 0 λ2

1i + λ3i λ1i

0 0 λ1i 1

 (57)

and

% =
[

0 0 λ1igi(t) −2gi(t)
]
. (58)
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Letting L = [0 λ1iD̄2 D̄2]T , one obtains

V̇3 ≤ −ε−1σmin(Π2)‖ν‖2 + ‖L‖‖ν‖. (59)

From (59) it follows that

σmin(Π1)‖ν‖2 ≤ V2
3 ≤ σmax(Π1)‖ν‖2 (60)

and (59) becomes

V̇3 ≤ −ε−1 σmin(Π2)

σmax(Π1)
V3 +

‖L‖√
σmax(Π1)

V
1
2
3 . (61)

Considering W 2 = ε2V3, it is obtained that

Ẇ ≤ −ε−1β1W + εβ2, (62)

where β1 = σmin(Π2)
2σmax(Π1) and β2

‖L‖
2
√
σmax(Π1)

. We obtain that Ẇ in (62) ensures ultimate

boundedness. If ε→ 0 the ultimate bound of the error also tends to zero. This completes
the proof. �

Remark 5.2. It should be noticed that conditions for the stability of the modified ESO
(43) have been obtained in terms of positive gains λ1i, λ2i, λ3i, λ4i and α ∈ (0, 1) in
the equation (45) for the estimation errors. When suitable gains are chosen, Z2 will be
a precise estimate of d̃ and the bound of the estimation error E2 is very small and tend
to zero if ε→ 0.

Using the results from the ESO system, Z2 is the good estimated disturbance. Thus,
for the control law (49), we use d̂ that is determined by d̂ = Z2. Thus, the proposed
inverse optimal PID control can be obtained as.

u = u∗ −G−1Z2. (63)

Note that the proposed controller (63) is designed by combing the inverse optimal con-
troller (29) and the result of estimated disturbance. With suitable control gains defined
by the inverse optimal control approach, the optimal PID controller (63) contains both
optimality and robustness performance to attenuate external disturbances.

6. SIMULATION RESULTS

An example of attitude control of flexible spacecraft [10] is presented with numerical
simulations to compare the inverse optimal PID controller with the optimal Lyapunov
sliding mode controller (OLSMC) in [22]. The spacecraft is assumed to have the nominal
inertia matrix

J =

 350 3 4
3 270 10
4 10 190

 kg ·m2
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and coupling matrices

δ =


6.45637 1.27814 2.15629
−1.25619 0.91756 −1.67264
1.11678 2.48901 −0.83674
1.23637 −2.6581 −1.12503

 kg1/2 ·m/s2

respectively. The first four elastic modes have been considered in the model used for sim-
ulating spacecraft at ωn1 = 0.7681, ωn2 = 1.1038, ωn3 = 1.8733, ωn4 = 2.5496 rad/sec
with damping ξ1 = 0.0056, ξ2 = 0.0086, ξ3 = 0.013, ξ1 = 0.025. The initial states of the
rotation motion are given by

Q(0) =


0.8832

0.3
−0.3
0.2

 ω(0) =

 0
0
0

 rad/sec,

η(0) =


0
0
0
0

 and η̇(0) =


0
0
0
0

 .
The attitude control problem is considered in the presence of external disturbance d(t).

d(t) = 0.5

 0.3 cos(0.1t) + 0.1
0.15 sin(0.1t) + 0.3 cos(0.1t)

0.3 sin(0.1t) + 0.1

 N−m. (64)

The proposed inverse optimal PID controller is obtained by using (63) with the mod-
ified ESO (51). For the proposed inverse optimal PID controller, the control parameters
are set as KP = 2I3, KI = 0.4I3, γ = 60 and µ = 0.5, λ1i = 5.0, λ2i = 1.5, λ3i = 1.0
and λ4i = 0.5. Also, the same control parameters in the OLSMC method in [22] are
selected. Note that the values of the four elastic modes can be obtained by using (12)
and (13). The disturbance can be obtained by using (64). However, in this paper, the
proposed disturbance observer is used to compensate for the total disturbance consisting
of the vibration effect and external disturbance. Thus, the total disturbance should be
plotted.

Simulation results are conducted to compare the performance of both control meth-
ods. In Figures 1 and 2, responses of quaternion and angular velocity components
converge to zero after 100 seconds. The components of angular velocity vector are not
smooth. From Figure 3 one can see that OLSMC in [22] stabilizes the closed-loop system
of flexible spacecraft. Figures 4 and 5 show the modal displacements (η1 − η4) in which
oscillations are reduced slowly.

On the other hand, Figure 6 shows that the inverse optimal PID controller achieves
good responses of the quaternions which converge to zero in about 80 seconds. Similarly,
from Figure 7 one can see that the angular velocities go to zero after 80 seconds. The
responses of angular velocities are smoother and the proposed controller gives quicker
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Fig. 1. Quaternion vector under OLSMC in [22].

Fig. 2. Angular velocity vector under OLSMC in [22].

convergence rates when compared with those obtained from OLSMC. As shown in Fig-
ure 8 the control torques obtained by the proposed inverse optimal PID controller are
smoother than ones obtained by OLSMC in [22]. Our proposed control method has
the proposed modified ESO presented by (51) using to compensate for the total dis-
turbance consisting of the vibration effect and external disturbance. Thus, smoother
control responses are obtained. As shown in Figures 9 – 11, the components of the to-
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Fig. 3. Control torques under OLSMC in [22].

Fig. 4. Modal displacements under OLSMC in [22].

tal disturbance d̃ and the estimated total disturbance d̂ are presented. The estimated
disturbance d̂ converges to the total disturbance d̃. The proposed ESO can properly
estimate the values of the total disturbance.

Simulation results obtained by OLSMC and proposed inverse optimal PID controller
are compared. One can see that the proposed inverse optimal PID controller offers
smoother attitude velocity responses and better responses of modal displacements. In
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Fig. 5. Modal displacements under OLSMC in [22].

Fig. 6. Quaternion vector under controller (63).

view of these simulation results, the proposed inverse optimal PID controller is con-
sidered as a more useful approach for general cases of attitude regulation problems of
a flexible spacecraft.
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Fig. 7. Angular velocity vector under controller (63).

Fig. 8. Control torques under controller (63).

7. CONCLUSION

A robust optimal PID control algorithm for a flexible spacecraft in the presence of un-
known bounded external disturbances has been successfully designed. This controller is
designed based on CLF, PID and inverse optimal control schemes. The modified ESO is
developed to compensate for external disturbances and vibration of flexible appendages.
The second method of Lyapunov is used to demonstrate its properties including the con-
vergence rate and ultimate boundedness of the estimation error. The proposed controller
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Fig. 9. First component of the estimated total disturbance.
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Fig. 10. Second component of the estimated total disturbance.

can be expressed as the sum of an optimal controller and estimated disturbance. It is
shown that the developed controller can stabilize the attitude control system and mini-
mize a cost functional. Numerical simulations are performed to verify the performance
of the developed control method. The robust optimal control for attitude stabilization of
flexible spacecraft has rarely been studied and most developed control methods usually
consider only the optimal control problem or robust control problem. In contrast to
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Fig. 11. Third component of the estimated total disturbance.

the previous control algorithms, the proposed control method in this paper is optimal
with respect to a cost functional. Moreover, with the developed ESO, this controller
can effectively suppress external disturbances. Thus, the proposed PID optimal control
method offers both optimality and robustness. However, the main limitation of the pro-
posed control method is that the total disturbance including external disturbance and
the disturbance caused by the elastic vibration of flexible appendages and its first time
derivative are required to be bounded.
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