Kybernetika 54 no. 4, 765-777, 2018

Gaussian approximation for functionals of Gibbs particle processes

Daniela Flimmel and Viktor BenešDOI: 10.14736/kyb-2018-4-0765


In the paper asymptotic properties of functionals of stationary Gibbs particle processes are derived. Two known techniques from the point process theory in the Euclidean space $\mathbb{R}^d$ are extended to the space of compact sets on $\mathbb{R}^d$ equipped with the Hausdorff metric. First, conditions for the existence of the stationary Gibbs point process with given conditional intensity have been simplified recently. Secondly, the Malliavin-Stein method was applied to the estimation of Wasserstein distance between the Gibbs input and standard Gaussian distribution. We transform these theories to the space of compact sets and use them to derive a Gaussian approximation for functionals of a planar Gibbs segment process.


asymptotics of functionals, innovation, stationary Gibbs particle process, Wasserstein distance


60D05, 60G55


  1. V. Beneš, J. Večeřa and M. Pultar: Planar segment processes with reference mark distributions, modeling and simulation. Methodol. Comput. Appl. Probab. (2018), accepted.   DOI:10.1007/s11009-017-9608-x
  2. B. Blaszczyszyn, D. Yogeshwaran and J. E. Yukich: Limit theory for geometric statistics of point processes having fast decay of correlations. Preprint (2018), submitted to the Annals of Probab.   arXiv:1606.03988v3 [math.PR]
  3. D. J. Daley and D. Vere-Jones: An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods.   CrossRef
  4. D. Dereudre: Introduction to the theory of Gibbs point processes. Preprint (2017), submitted.   arXiv:1701.08105 [math.PR]
  5. H.-O. Georgii: Gibbs Measures and Phase Transitions. Second edition. W. de Gruyter and Co., Berlin 2011.   DOI:10.1515/9783110250329
  6. G. Last and M. Penrose: Lectures on the Poisson Process. Cambridge University Press, Cambridge 2017.   DOI:10.1017/9781316104477
  7. S. Mase: Marked Gibbs processes and asymptotic normality of maximum pseudo-likelihood estimators. Math. Nachr. 209 (2000), 151-169.   DOI:10.1002/(sici)1522-2616(200001)209:1<151::aid-mana151>;2-j
  8. D. Ruelle: Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18 (1970), 127-159.   DOI:10.1007/bf01646091
  9. R. Schneider and W. Weil: Stochastic and Integral Geometry. Springer, Berlin 2008.   DOI:10.1007/978-3-540-78859-1
  10. T. Schreiber and J. E. Yukich: Limit theorems for geometric functionals of Gibbs point processes. Ann. Inst. Henri Poincaré - Probab. et Statist. 49 (2013), 1158-1182.   DOI:10.1214/12-aihp500
  11. J. Serra: Image Analysis and Mathematical Morphology. Academic Press, London 1982.   DOI:10.1002/cyto.990040213
  12. K. Stucki and D. Schuhmacher: Bounds for the probability generating functional of a Gibbs point process. Adv. Appl. Probab. 46 (2014), 21-34.   DOI:10.1239/aap/1396360101
  13. G. L. Torrisi: Probability approximation of point processes with Papangelou conditional intensity. Bernoulli 23 (2017), 2210-2256.   DOI:10.3150/16-bej808
  14. J. Večeřa and V. Beneš: Approaches to asymptotics for U-statistics of Gibbs facet processes. Statist. Probab. Let. 122 (2017), 51-57.   DOI:10.1016/j.spl.2016.10.024
  15. A. Xia and J. E. Yukich: Normal approximation for statistics of Gibbsian input in geometric probability. Adv. Appl. Probab. 25 (2015), 934-972.   DOI:10.1017/s0001867800048965