Kybernetika 54 no. 3, 576-592, 2018

Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations

Meili Lin and Zhendong SunDOI: 10.14736/kyb-2018-3-0576


In this paper, we develop computational procedures to approximate the spectral abscissa of the switched linear system via square coordinate transformations. First, we design iterative algorithms to obtain a sequence of the least $\mu_1$ measure. Second, it is shown that this sequence is convergent and its limit can be used to estimate the spectral abscissa. Moreover, the stopping condition of Algorithm 1 is also presented. Finally, an example is carried out to illustrate the effectiveness of the proposed method.


switched linear systems, matrix set measure, spectral abscissa, coordinate transformations




  1. N. Barabanov: Ways to compute the Lyapunov index for differential nesting. Automat. Remote Control 50 (1989), 4, 475-479.   DOI:10.1109/tac.1969.1099279
  2. F. Blanchini: The gain scheduling and the robust state feedback stabilization problems. IEEE Trans. Automat. Control 45 (2000), 11, 2061-2070.   DOI:10.1109/9.887627
  3. W. Dayawansa and C. Martin: A converse {L}yapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Automat. Control 44 (1999), 4, 751-760.   CrossRef
  4. Y. Chitour, P. Mason and M. Sigalotti: On the marginal instability of linear switched systems. Systems Control Lett. 61 (2012), 747-757.   DOI:10.1016/j.sysconle.2012.04.005
  5. L. Gurvits: Stability of discrete linear inclusions. Linear Algebra Appl. 231 (1995), 47-85.   DOI:10.1016/0024-3795(95)90006-3
  6. M. Johansson: Piecewise Linear Control Systems. Springer, New York 2003.   DOI:10.1007/3-540-36801-9
  7. M. Johansson and A. Rantzer: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Automat. Control 43 (1998), 4, 555-559.   DOI:10.1109/9.664157
  8. D. Liberzon, J. Hespanha and A. Morse: Stability of switched systems: A Lie-algebraic condition. Systems Control Lett. 37 (1999), 117-122.   DOI:10.1016/s0167-6911(99)00012-2
  9. M. Lin and Z. Sun: Approximating the spectral abscissa for switched linear systems via coordinate transformations. J. Systems Science Complexity 29 (2016), 2, 350-366.   DOI:10.1007/s11424-015-4175-0
  10. A. Molchanov and Y. Pyatnitskiy: Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 (1989), 1, 59-64.   DOI:10.1016/0167-6911(89)90021-2
  11. A. Morse: Supervisory control of families of linear set-point controllers {Part I.} {Exact} matching. IEEE Trans. Automat. Control 41 (1996), 10, 1413-1431.   DOI:10.1109/9.539424
  12. K. Narendra and J. Balakrishnan: A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans. Automat. Control 39 (1994), 12, 2469-2471.   DOI:10.1109/9.362846
  13. A. Nedic and A. Ozdaglar: Subgradient methods for saddle-point problems. J. Optim. Theory Appl. 1 (2009), 205-228.   DOI:10.1007/s10957-009-9522-7
  14. P. Parrilo and A. Jadbabaie: Approximation of the joint spectral radius using sum of squares. Linear Algebra Appl. 428 (2008), 10, 2385-2402.   DOI:10.1016/j.laa.2007.12.027
  15. V. Protasov and R. Jungers: Analysing the stability of linear systems via exponential Chebyshev polynomials. IEEE Trans. Automat. Control 61 (2016), 3, 795-798.   DOI:10.1016/j.laa.2007.12.027
  16. M. Shih, J. Wu and C. Pang: Asymptotic stability and generalized Gelfand spectral radius formula. Linear Algebra Appl. 252 (1997), 61-70.   DOI:10.1016/0024-3795(95)00592-7
  17. Z. Sun: A note on marginal stability of switched systems. IEEE Trans. Automat. Control 53 (2008), 2, 625-631.   DOI:10.1109/tac.2008.917644
  18. Z. Sun: Matrix measure approach for stability of switched linear systems. In: 7th IFAC Symposium Nonlinear Control System, Pretoria 2007.   CrossRef
  19. R. Shorten and K. Narendra: On common quadratic Lapunov functions for pairs of stable {LTI} systems whose system matrices are in companion form. IEEE Trans. Automat. Control 48 (2003), 4, 618-621.   DOI:10.1109/tac.2003.809795
  20. Z. Sun and S. Ge: Stability Theory of Switched Dynamical Systems. Springer-Verlag, London 2011.   DOI:10.1007/978-0-85729-256-8
  21. J. Xiong and Z. Sun: Approximation of extreme measure for switched linear systems. In: 9th IEEE International Conference on Control and Automation, Santiago 2011.   DOI:10.1109/icca.2011.6138012