Kybernetika 54 no. 3, 443-475, 2018

On ideals in De Morgen residuated lattices

Liviu-Constantin HoldonDOI: 10.14736/kyb-2018-3-0443

Abstract:

In this paper, we introduce a new class of residuated lattices called De Morgan residuated lattices, we show that the variety of De Morgan residuated lattices includes important subvarieties of residuated lattices such as Boolean algebras, MV-algebras, BL-algebras, Stonean residuated lattices, MTL-algebras and involution residuated lattices. We investigate specific properties of ideals in De Morgan residuated lattices, we state the prime ideal theorem and the pseudo-complementedness of the ideal lattice, we pay attention to prime, maximal, $\odot$-prime ideals and to ideals that are meet-irreducible or meet-prime in the lattice of all ideals. We introduce the concept of an annihilator of a given subset of a De Morgan residuated lattice and we prove that annihilators are a particular kind of ideals. Also, regular annihilator and relative annihilator ideals are considered.

Keywords:

ideal, filter, residuated lattice, De Morgan laws, deductive system, $\cap $-prime, $\cap $-irreducible, annihilator

Classification:

08A72, 03B22, 03G05, 03G25, 06A06

References:

  1. R. Balbes and Ph. Dwinger: Distributive Lattices. University of Missouri Press 1974.   CrossRef
  2. T. S. Blyth: Lattices and Ordered Algebraic Structures. Springer, London 2005.   DOI:10.1007/b139095
  3. C. Buşneag and D. Piciu: The stable topologies for residuated lattices. Soft Computing 16 (2012), 1639-1655.   DOI:10.1007/s00500-012-0849-x
  4. D. Buşneag, D. Piciu and J. Paralescu: Divisible and semi-divisible residuated lattices. Ann. Alexandru Ioan Cuza University-Mathematics (2013), 14-45.   CrossRef
  5. D. Buşneag, D. Piciu and L. C. Holdon: Some Properties of Ideals in Stonean residuated lattice. J. Multiple-Valued Logic Soft Computing 24 (2015), 5-6, 529-546.   CrossRef
  6. R. Cignoli: Free algebras in varieties of Stonean residuated lattices. Soft Computing 12 (2008), 315-320.   DOI:10.1007/s00500-007-0183-x
  7. F. Esteva and L. Godo: Monoidal $t-$norm based logic: towards a logic for left-continnuos $t-$norms. Fuzzy Sets and Systems 124 (2001), 3, 271-288.   DOI:10.1016/s0165-0114(01)00098-7
  8. C. Lele and J. B. Nganou: MV-algebras derived from ideals in BL-algebra. Fuzzy Sets and Systems 218 (2013), 103-113.   DOI:10.1016/j.fss.2012.09.014
  9. F. G. Maroof, A. B. Saeid and E. Eslami: On co-annihilators in residuated lattices. J. Intelligent Fuzzy Systems 31 (2016), 1263-1270.   DOI:10.3233/ifs-162192
  10. N. Galatos, P. Jipsen, T. Kowalski and H. Ono: Residuated Lattices: an Algebraic Glimpse at Substructural Logics. Studies in Logics and the Foundations of Mathematics, Elsevier 2007.   CrossRef
  11. L. C. Holdon, L. M. Niţu and G. Chiriac: Distributive residuated lattices. Ann. University of Craiova-Mathematics and Computer Science Series 39 (2012), 100-109.   CrossRef
  12. C. Mureşan: Co-stone Residuated Lattices. Ann. University of Craiova-Mathematics and Computer Science Series 40 (2013), 52-75.   DOI:10.1109/ismvl.2010.27
  13. A. Iorgulescu: Algebras of Logic as BCK-algebras. Academy of Economic Studies Bucharest, Romania 2008.   CrossRef
  14. L. Leuştean: Baer extensions of BL-algebras. J. Multiple-Valued Logic Soft Computing 12 (2006), 321-335.   CrossRef
  15. D. Piciu: Algebras of Fuzzy Logic. Editura Universitaria, Craiova 2007.   CrossRef
  16. J. Rachunek and D. Salounova: Ideals and involutive filters in residuated lattices. In: SSAOS 2014, Stara Lesna.   CrossRef
  17. E. Turunen: Mathematics Behind Fuzzy logic. Physica-Verlag Heidelberg, New York 1999.   CrossRef
  18. Y. X. Zou, X. L. Xin and P. F. He: On annihilators in BL-algebras. Open Math. 14 (2016), 324-337.   DOI:10.1515/math-2016-0029