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ON IDEALS IN DE MORGAN RESIDUATED LATTICES

Liviu-Constantin Holdon

In this paper, we introduce a new class of residuated lattices called De Morgan residuated
lattices, we show that the variety of De Morgan residuated lattices includes important sub-
varieties of residuated lattices such as Boolean algebras, MV-algebras, BL-algebras, Stonean
residuated lattices, MTL-algebras and involution residuated lattices. We investigate specific
properties of ideals in De Morgan residuated lattices, we state the prime ideal theorem and the
pseudo-complementedness of the ideal lattice, we pay attention to prime, maximal, �-prime
ideals and to ideals that are meet-irreducible or meet-prime in the lattice of all ideals. We
introduce the concept of an annihilator of a given subset of a De Morgan residuated lattice and
we prove that annihilators are a particular kind of ideals. Also, regular annihilator and relative
annihilator ideals are considered.
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1. INTRODUCTION

Recently, a lot of work has been done with respect to the co-annihilators in varieties of
residuated lattices. For example, in 2013, C. Mureşan ([12]) investigated substructures
of residuated lattices and the filter theory by the concept of co-annihilators in order
to characterise Co-Stone residuated lattices. L. Leuştean ([14]) used them in order to
construct the Baer extention of BL-algebras and in 2016, F. G. Maroof et al. ([9])
published a study on co-annihilators and relative co-annihilators in residuated lattices.
In 2013, C. Lele et al. ([8]) constructed some examples to show that, unlike in MV-
algebras, ideals and filters are dual but behave differently in BL-algebras. And in 2014,
J. Rachunek and D. Salounova presented some results on ideals and involutive filters in
residuated lattices (see the presentation at the meeting of SSAOS 2014, Stara Lesna,
September 6-12 [16]). In 2015, D. Buşneag et al. ([5]) investigated the variety of Stonean
residuated lattices and they discussed it from the view of ideal theory. In 2016, Yu Xi
Zou et al. ([18]) published a study on ideals and annihilator ideals in BL-algebras. In
this paper, motivated by the previous research on co-annihilators in residuated lattices
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(see [9, 12, 14]), ideals in MV-algebras and BL-algebras (see [8]), annihilator ideals in
BL-algebras (see [18]) and implicative ideals in Stonean residuated lattices (see [5]), we
study the notions of ideal and annihilator ideal in a new class of residuated lattices called
De Morgan residuated lattices.

This paper is organized as follows: in the next section we give some preliminaries
including the basic definitions, some examples of residuated lattices, rules of calculus
and theorems that are needed in the sequel. In Section 3, we study ideals in residuated
lattices, and it contains two subsections: in Subsection 3.1, we study in the general
case of residuated lattices the relationships between various notions of ideals from the
literature such as left and right ideals (see [8, 16]) and implicative ideals (see [5]) and we
show that these notions coincide (Theorem 3.5), after that we pay attention to prime,
maximal and �-prime ideals. We propose some characterizations for maximal ideals in
residuated lattices (Theorem 3.9). In Subsection 3.2, we define �-prime ideals and we
study them in order to establish the relationship between ideals and filters in residuated
lattices. In Section 4, we study ideals in a new class of residuated lattices called De
Morgan residuated lattices, it contains five subsections: in Subsection 4.1, we define the
class of De Morgan residuated lattices (the residuated lattice L is called De Morgan
if the De Morgan law (x ∧ y)∗ = x∗ ∨ y∗, for all x, y ∈ L hold), we note that De
Morgan residuated lattices are not same as residuated De Morgan lattices. We give the
relationship between De Morgan residuated lattices and other algebraic structures, in
this sense we show that the variety of De Morgan residuated lattices includes important
subvarieties of residuated lattices such as Boolean algebras, MV-algebras, BL-algebras,
Stonean residuated lattices, MTL-algebras and involution residuated lattices. We note
that the classes of De Morgan residuated lattices and semi-G-algebras are different.
In Subsection 4.2, our goal is to study ideals in the variety of De Morgan residuated
lattices, we investigate specific properties of ideals in De Morgan residuated lattices, we
state the prime ideal theorem (Theorem 4.14) and the pseudo-complementedness of the
ideal lattice (Theorem 4.30), we pay attention to prime, maximal and to ideals that are
meet-irreducible or meet-prime in the lattice of all ideals. In Subsection 4.3, since the
notion of annihilator is missing in De Morgan residuated lattices, we fill this gap by
introducing the concept of annihilator for De Morgan residuated lattices, we show that
annihilators are a particular kind of ideals and we put in evidence some properties of
them. We get that the ideal lattice (Ii(L),⊆) is pseudo-complemented, and for any ideal
I, its pseudo-complement is the annihilator I⊥. We define An(L) to be the set of all
annihilators of L, then we have that (An(L),∩,∨An(L),⊥, {0}, L) is a Boolean algebra.
In Subsection 4.4, we introduce the notion of regular ideal and give a notation R(I).
We show that (R(Ii(L)),u,t, R(0), R(L)) is a pseudo-complemented lattice, a complete
Brouwerian lattice and an algebraic lattice, when L is a totally ordered De Morgan
residuated lattice. In Subsection 4.5, we introduce the annihilator of a nonempty subset
X of L with respect to an ideal I and study some properties of them. As an application,
we show that if I and J are ideals in the De Morgan residuated lattice L, then (J, I)⊥

is the relative pseudo-complement of J with respect to I in the ideal lattice (Ii(L),⊆).
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2. PRELIMINARIES

Definition 2.1. (Galatos et al. [10]) A residuated lattice (L,∨,∧,�,→, 0, 1) is an
algebra of type (2, 2, 2, 2, 0, 0) equipped with an order ≤ such that

LR1 : (L,∨,∧, 0, 1) is a bounded lattice relative to ≤;

LR2 : (L,�, 1) is a commutative ordered monoid;

LR3 : � and → form an adjoint pair, i. e., a� x ≤ b iff x ≤ a→ b, for all x, a, b ∈ L.

For examples of residuated lattices see [4, 10, 13, 15, 17].
In what follows by L we denote the universe of a residuated lattice (unless otherwise

specified). For x ∈ L and n ≥ 0 we define x∗ = x → 0, x∗∗ = (x∗)∗, x0 = 1 and
xn = xn−1 � x for n > 1.

For x, y, z ∈ L, we have the following rules of calculus (see [4, 10, 15, 17]):
(c1) x→ x = 1, x→ 1 = 1, 1→ x = x;
(c2) x ≤ y iff x→ y = 1;
(c3) If x ≤ y, then z � x ≤ z � y, z → x ≤ z → y, y → z ≤ x→ z;
(c4) If x ≤ y, then y∗ ≤ x∗, x∗∗ ≤ y∗∗;
(c5) x� x∗ = 0, x ≤ x∗∗, x∗∗∗ = x∗;
(c6) x� y = 0 iff x ≤ y∗;
(c7) x� (y ∨ z) = (x� y) ∨ (x� z);
(c8) x ∨ (y � z) ≥ (x ∨ y)� (x ∨ z);
(c9) x→ (y ∧ z) = (x→ y) ∧ (x→ z);
(c10) x� (x→ y) ≤ x ∧ y;
(c11) (x ∨ y)∗ = x∗ ∧ y∗;
(c12) x∗ � y∗ ≤ (x� y)∗, x∗∗ � y∗∗ ≤ (x� y)∗∗;
(c13) (x→ y∗∗)∗∗ = x→ y∗∗;
(c14) x→ (y → z) = y → (x→ z) = (x� y)→ z, (x� y)∗ = x→ y∗ = y → x∗.

Following the above mentioned literature, we consider the identities:
(i1) x ∧ y = x� (x→ y) divisibility;
(i2) (x∗ ∧ y∗)∗ = [x∗ � (x∗ → y∗)]∗ semi-divisibility;
(i3) (x→ y) ∨ (y → x) = 1 prelinearity;
(i4) x∗ ∨ x∗∗ = 1 Stone property;
(i5) x2 = x idenpotence;
(i6) x = x∗∗ involution;
(i7) (x2)∗ = x∗.

Then the residuated lattice L is called:
Divisible if L verifies (i1);
Semi-divisible if L verifies (i2);
MTL-algebra if L verifies (i3);
BL-algebra if L verifies (i1) and (i3);
Stonean if L verifies (i4);
G-algebra(Heyting algebra) if L verifies (i5);
Involution if L verifies (i6);
semi-G-algebra if L verifies (i7).



446 L.-C. HOLDON

Definition 2.2. (Piciu [15]) A filter (or implicative filter, �-filter) is a nonempty subset
F of L such that

(F1) If x ≤ y and x ∈ F, then y ∈ F ;
(F2) If x, y ∈ F, then x� y ∈ F.

Remark 2.3.
1. F is a filter of L iff 1 ∈ F and if x, x→ y ∈ F, then y ∈ F (that is, F is a deductive

system of L).
2. Every filter is a lattice filter in the lattice (L,∧,∨), but the converse need not hold

([15, 17]).

So, if we denote by F(L) (Fi(L)) the set of all lattice filters (filters) of L, then
Fi(L) ⊆ F(L). We have ([3]), Fi(L) = F(L) iff x� y = x ∧ y for every x, y ∈ L.

Definition 2.4. (Mureşan [12]) We say that a proper filter P ∈ Fi(L) is a prime filter
iff, for all x, y ∈ L, if x ∨ y ∈ P, then x ∈ P or y ∈ P.

We recall that a filter M of L is called maximal if M 6= L and M is not strictly
contained in a proper filter of L. Clearly, if we denote by SpecF (L) the set of all prime
filters of L, and by MaxF (L) the set of all maximal filters of L, then MaxF (L) ⊆
SpecF (L).

Proposition 2.5. (Galatos et al. [10], Piciu [15], Turunen [17]) Let L be a residuated
lattice and M ∈ Fi(L), M 6= L. The following conditions are equivalent:

(i) M ∈MaxF (L);

(ii) If x /∈M, then there is n ≥ 1 such that (xn)∗ ∈M.

Proposition 2.6. (Buşneag et al. [4]) If M ∈MaxF (L), then x ∈M iff x∗∗ ∈M.

Theorem 2.7. (Blyth [2]) Let (L,∧,∨) be a lattice and let f : L×L→ L be a closure
map. Then Imf is a lattice in which the lattice operations are given by inf f(a, b) = a∧b,
sup f(a, b) = f(a ∨ b).

If L is a residuated lattice, then for x, y ∈ L we define

x⊕ y = (x∗ � y∗)∗ (c14)
= x∗ → y∗∗. (1)

The operation x⊕ y will be called strong addition.

Lemma 2.8. (Buşneag et al. [5]) Let L be a residuated lattice and x, y, z, t ∈ L.
Then:

(c15) x⊕ 0 = x∗∗, x⊕ 1 = 1, x⊕ x∗ = 1;
(c16) x⊕ y = y ⊕ x, x, y ≤ x⊕ y;
(c17) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;
(c18) If x ≤ y, then x⊕ z ≤ y ⊕ z;
(c19) If x ≤ y, z ≤ t, then x⊕ z ≤ y ⊕ t.
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Remark 2.9. By Lemma 2.8, we conclude that the operation ⊕ is commutative, asso-
ciative and compatible with the order relation.

For x ∈ L and n ≥ 0, we define 0 · x = 0 and n · x = [(n − 1) · x] ⊕ x for n ≥ 1. For
simplicity, we denote nx := n · x. Inductively, we deduce:

Corollary 2.10. If x, y ∈ L and m,n ≥ 1, then
(c20) If m ≤ n, then mx ≤ nx;
(c21) If x ≤ y, then mx ≤ my.

P r o o f . (c20). Since x
(c5)

≤ x∗∗, x ≤ x∗ → x∗∗ = x⊕ x = 2x, we conclude that x ≤ 2x,
this is, if m ≤ n, then mx ≤ nx, for any natural numbers m,n ≥ 1.

(c21). Since x ≤ y, y∗
(c4)

≤ x∗, y∗�y∗
(c3)

≤ x∗�x∗, (x∗�x∗)∗ ≤ (y∗�y∗)∗, x⊕x ≤ y⊕y,
2x ≤ 2y, we conclude that mx ≤ my, for every natural number m ≥ 1. �

If L is a residuated lattice, then for x, y ∈ L we define

x� y = x∗ → y, (2)

x; y = y∗ → x. (3)

The operation x � y = x∗ → y will be called left addition, and x ; y = y∗ → x will
be called right addition ([8, 16]). In the following examples we show that the left, right
and strong additions are different in residuated lattices.

Example 2.11. In residuated lattices the left and right additions, respective the left
and strong additions may not coincide. Indeed, if we consider the lattice L = {0, a, c, d,m, 1}
with 0 < a < m < 1, 0 < c < d < m < 1, but a incomparable with c and d.

1

m

d

a

c

0

Then ([13], page 233) L is a residuated lattice with respect to the following operations:

→ 0 a c d m 1
0 1 1 1 1 1 1
a d 1 d d 1 1
c a a 1 1 1 1
d a a m 1 1 1
m 0 a d d 1 1
1 0 a c d m 1

� 0 a c d m 1
0 0 0 0 0 0 0
a 0 a 0 0 a a
c 0 0 c c c c
d 0 0 c c c d
m 0 a c c m m
1 0 a c d m 1
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Since a�c = a∗ → c = d→ c = m, a;c = c∗ → a = a→ a = 1 and a⊕c = (a∗�c∗)∗ =
(d � a)∗ = 0∗ = 1, we conclude that a � c 6= a ; c, a � c 6= a ⊕ c, and a ; c = a ⊕ c.
Therefore, the left and right additions, respective the left and strong additions may not
coincide.

Example 2.12. In a residuated lattices the left and right additions may not coincide
with strong additions. Indeed, if we consider the lattice L = {0, a, b, c, d,m, 1} with
0 < a < b < m < 1, 0 < c < d < m < 1 and elements {a, c} and {b, d} are pairwise
incomparable.

1

m

b d

a c

0

Then ([13], page 234) L is a residuated lattice with respect to the following operations:

→ 0 a b c d m 1
0 1 1 1 1 1 1 1
a d 1 1 d d 1 1
b d m 1 d d 1 1
c b b b 1 1 1 1
d b b b m 1 1 1
m 0 b b d d 1 1
1 0 a b c d m 1

� 0 a b c d m 1
0 0 0 0 0 0 0 0
a 0 a a 0 0 a a
b 0 a a 0 0 a b
c 0 0 0 c c c c
d 0 0 0 c c c d
m 0 a a c c m m
1 0 a b c d m 1

Since a�c = a∗ → c = d→ c = m, a;c = c∗ → a = b→ a = m and a⊕c = (a∗�c∗)∗ =
(d� b)∗ = 0∗ = 1, we conclude that a� c = a; c 6= a⊕ c. Therefore, the left and right
additions coincide and they are different than the strong addition.

3. IDEALS IN A RESIDUATED LATTICE

In residuated lattices literature ([5, 8, 16]) can be found at least two types of ideals, J.
Rachunek et al. ([16]) defined the left and right ideals in the case of non-commutative
residuated lattices, soon after, C. Lele et al. ([8]) published a study on left ideals
in BL-algebras, and D. Buşneag et al. ([5]) defined the implicative ideals in Stonean
residuated lattices. These notions of left, right and implicative ideals were defined
differently. However, we will see that there are strong similarities between them. In this
section, to avoid misunderstandings, we study the relationships between these notions
of ideals in residuated lattices. Also, we study prime, maximal and �-prime ideals in
residuated lattices.



On ideals in De Morgan residuated lattices 449

3.1. Left, right and implicative ideals in a residuated lattice

Left and right ideals in a non-commutative residuated lattice L were defined and studied
by J. Rachunek et al. ([16]). If L is a commutative residuated lattice, then x∼ = x−

(because → and  coincide).

Definition 3.1. (Lele and Nganou [8], Rachunek and Salounova [16]) A nonempty
subset I will be called:
(i) a left ideal (L-ideal, for short) of L if

(Il1) If x ≤ y and y ∈ I, then x ∈ I;
(Il2) If x, y ∈ I, then x� y ∈ I.

(ii) a right ideal (R-ideal, for short) of L if
(Ir1) If x ≤ y and y ∈ I, then x ∈ I;
(Ir2) If x, y ∈ I, then x; y ∈ I.

(iii) a left-right ideal (LR-ideal, for short) of L if it is both a left and right ideal.

Every L-ideal as well as every R-ideal of a residuated lattice L is a lattice ideal.
Therefore, an LR-ideal is a lattice ideal. However, lattice ideals are not always LR-
ideals, that we can see in Example 2.11, where I = {0, a, c, d,m} is a lattice ideal, but
a; c = c∗ → a = a→ a = 1 /∈ I.

If I is an LR-ideal of a residuated lattice L, define the binary relation θI on L as
follows (x, y ∈ L) : 〈x, y〉 ∈ θI iff x∗ � y ∈ I and x� y∗ ∈ I.

Theorem 3.2. (Lele and Nganou [8], Rachunek and Salounova [16]) θI is a congruence
on the reduct (L,�,∨,→, 0, 1) of the residuated lattice L. If L is a pseudo BL-algebra,
then θI is a congruence on L.

Definition 3.3. (Buşneag et al. [5]) A nonempty subset I will be called an ideal
(implicative ideal) of L if

(I1) If x ≤ y and y ∈ I, then x ∈ I;
(I2) If x, y ∈ I, then x⊕ y ∈ I.

Remark 3.4. (Buşneag et al. [5]) Every ideal is a lattice ideal in the lattice (L,∧,∨, 0, 1),
but the converse is not true. Moreover, the intersection of two ideals becomes an ideal.

In the following theorem we show that the notions of LR-ideals and ideals (implicative
ideals) coincide.

Theorem 3.5. If I is a nonempty subset of L, then I is an ideal iff I is an LR-ideal.

P r o o f . “⇒ ” Let I be an ideal of L. By (c16) we have x⊕y = y⊕x, that is, x∗ → y∗∗ =
y∗ → x∗∗. By (c5) and (c3) we have y ≤ y∗∗, for all y ∈ L and x∗ → y ≤ x∗ → y∗∗, that
is, x � y ≤ x ⊕ y ∈ I. Since I is an ideal, we conclude that x � y ∈ I, that is, I is an
L-ideal of L.

By (c5) and (c3) we have x ≤ x∗∗, for all x ∈ L and y∗ → x ≤ y∗ → x∗∗, that is,
x; y ≤ x⊕ y ∈ I. Since I is an ideal, we conclude that x; y ∈ I, that is, I is an R-ideal
of L. Therefore, I is an LR-ideal of L.
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“⇐ ”. Let I be an LR-ideal of L. Then x�y = x∗ → y ∈ I and x;y = y∗ → x ∈ I, for
all x, y ∈ I. By residuation property we have x∗∗ ≤ x∗ → y ∈ I and y∗∗ ≤ y∗ → x ∈ I,
and since I is an LR-ideal, we conclude that x∗∗ ∈ I and y∗∗ ∈ I. Since I is an LR-ideal
and x, y, x∗∗, y∗∗ ∈ I, then x ⊕ y = x∗ → y∗∗ = x � y∗∗ ∈ I and y ⊕ x = y∗ → x∗∗ =
x∗∗ ; y ∈ I. By (c16) we have x⊕ y = y ⊕ x, hence x⊕ y ∈ I, that is, I is an ideal of L.

�

We denote by Ii(L) the set of all ideals of L. Clearly, if I ∈ Ii(L), then I = L iff
1 ∈ I.

Proposition 3.6. (i) If I is an ideal of L, then x ∈ I iff x∗∗ ∈ I;

(ii) If I is an ideal of L, then x ∈ I iff nx ∈ I, for all n ≥ 1;

(iii) If I is an ideal of L, then x∗∗ ∈ I iff nx ∈ I, for all n ≥ 1.

P r o o f . (i) Since I is an ideal and 0, x ∈ I, it follows that x∗∗ = 0⊕ x ∈ I. Therefore,
x∗∗ ∈ I. Conversely, if x∗∗ ∈ I, by (c5), x ≤ x∗∗ ∈ I, we conclude that x ∈ I.

(ii) Since I is an ideal and x ∈ I, it follows that nx ∈ I. Conversely, if nx ∈ I, by
(c20), x ≤ nx ∈ I, we conclude that x ∈ I.

(iii) It follows easily from (i) and (ii). �

For a nonempty subset S of L we denote by (S] the ideal of L generated by S (that
is, (S] = ∩{I ∈ Ii(L) : S ⊆ I}) and for an element a ∈ L by (a] the ideal generated by
{a}. If I ∈ Ii(L) and a ∈ L we denote I(a) = (I ∪ {a}]. Clearly, I(a) = I iff a ∈ I.

Proposition 3.7. (Buşneag et al. [5]) Let L be a residuated lattice, S ⊆ L a nonempty
subset, a ∈ L and I ∈ Ii(L). Then:

(i) (S] = {x ∈ L : x ≤ s1 ⊕ · · · ⊕ sn, for some n ≥ 1 and s1, . . . , sn ∈ S};
(ii) (a] = {x ∈ L : x ≤ na for some n ≥ 1};
(iii) I(a) = {x ∈ L : x ≤ i⊕ na for some i ∈ I and n ≥ 1};
(iv) (Ii(L),⊆) is a complete lattice, where for I1, I2 ∈ Ii(L), I1 ∨ I2 = (I1 ∪ I2] =
{x ∈ L : x ≤ i1 ⊕ i2 with i1 ∈ I1 and i2 ∈ I2}.

Proposition 3.8. If Λ is an index set and (Ii)i∈Λ is a family of ideals of L, then the
infimum of this family is ∧i∈ΛIi = ∩i∈ΛIi and the supremum is ∨i∈ΛIi = (∪i∈ΛIi] =
{x∈L : x≤xi1⊕xi2⊕· · ·⊕xim , where i1, . . . , im∈Λ, xij ∈Iij , 1 ≤ j≤m, for some m≥
1}.

P r o o f . Let Λ be an index set and (Ii)i∈Λ a family of ideals of L. The identity ∧i∈ΛIi =
∩i∈ΛIi follows from the definition of ideal. In order to prove the second identity, for
simplicity, we denote by X := ∪i∈ΛIi and X := {x ∈ L : x ≤ xi1 ⊕ xi2 ⊕ · · · ⊕
xim , where i1, . . . , im ∈ Λ, xij ∈ Iij , 1 ≤ j ≤ m, for some m ≥ 1}. Clearly, X is a
nonempty set and by Proposition 3.7(i), we get that (X] is a nonempty set, too. By
Lemma 2.8, we have that the operation ⊕ is commutative, associative and compatible
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with the order relation, so it is immediate that X is an ideal which contains the set
X. Since (X] is the ideal of L generated by X (that is, (X] = ∩{I ∈ Ii(L) : X ⊆ I}),
it follows that (X] ⊆ X. Let x ∈ X, and let I be an arbitrary ideal of L including
X. Since x ∈ X, it follows that for some m ≥ 1 there are xij ∈ Iij ⊆ X such that
x ≤ xi1 ⊕ xi2 ⊕ · · · ⊕ xim , where i1, . . . , im ∈ Λ and 1 ≤ j ≤ m. Since I is an ideal of
L and xi1 , xi2 , . . . , xim ∈ X ⊆ I, it follows that xi1 ⊕ xi2 ⊕ · · · ⊕ xim ∈ I, hence x ∈ I.
Therefore, X ⊆ I. As I was arbitrary, we conclude that X ⊆ (X]. �

An ideal I ∈ Ii(L) is called proper if I 6= L. A proper ideal I ∈ Ii(L) is called prime
iff, for all a, b ∈ L, if a ∧ b ∈ I, then a ∈ I or b ∈ I. We denote by SpecId(L) the set of
all prime ideals of L.

An ideal M ∈ Ii(L) is called maximal if M is not strictly contained in a proper ideal
of L. We denote by MaxId(L) the set of all maximal ideals of L.

The following result is a characterization of maximal ideals in residuated lattices:

Theorem 3.9. If M is a proper ideal of L, then the following conditions are equivalent:
(i) M ∈MaxId(L);
(ii) For any x /∈M, there exist d ∈M,n ≥ 1 such that d⊕ (nx) = 1;
(iii) For any x ∈ L, x /∈M iff (nx)∗ ∈M, for some n ≥ 1.

P r o o f . (i)⇒ (ii) Let M ∈MaxId(L). If x /∈M, then M ⊂M(x), by the maximality
of M we conclude that M(x) = L, hence 1 ∈M(x). By Proposition 3.7(iii), there exist
d ∈M and n ≥ 1 such that 1 ≤ d⊕ (nx), that is, 1 = d⊕ (nx).

(ii) ⇒ (iii) Let x ∈ L \M be such that d ⊕ (nx) = 1, for some d ∈ M and n ≥ 1.
By Proposition 3.6(i) we have d ∈M iff d∗∗ ∈M. By residuation property and (c4), we
obtain successively d⊕ (nx) = 1, 1 ≤ d⊕ (nx), 1 ≤ d∗ → (nx)∗∗, 1� d∗ ≤ (nx)∗∗, d∗ ≤
(nx)∗∗, (nx)∗∗∗ ≤ d∗∗, (nx)∗ ≤ d∗∗ ∈M, hence (nx)∗ ∈M. Since (nx)⊕ (nx)∗ = 1 /∈M
and (nx)∗ ∈M, it follows that nx /∈M, and by Proposition 3.6(ii), we get that x /∈M.

(iii)⇒ (i) Assume there is a proper ideal M ′ such that M ⊂M ′. Then there exists
an element x ∈ M ′ such that x /∈ M. By the hypothesis, there exists n ≥ 1 such that
x /∈M iff (nx)∗ ∈M ⊂M ′. Hence (nx)∗ ∈M ′. By Proposition 3.6(ii) we have x ∈M ′
iff nx ∈ M ′. Since nx ∈ M ′, (nx)∗ ∈ M ′, but 1 = (nx) ⊕ (nx)∗ ∈ M ′, it follows that
M ′ = L, a contradiction. �

Let L,L′ be residuated lattices. On L × L′ we consider the order relation (x, y) ≤
(x′, y′) iff x ≤ x′ and y ≤ y′ and the operations

(x, y) ∧ (x′, y′) = (x ∧ x′, y ∧ y′),
(x, y) ∨ (x′, y′) = (x ∨ x′, y ∨ y′),
(x, y)� (x′, y′) = (x� x′, y � y′),
(x, y)→ (x′, y′) = (x→ x′, y → y′) for all x, y ∈ L and x′, y′ ∈ L′.
The L×L′ with the above operations is a residuated lattice called the direct product

of L and L′.

Theorem 3.10. Let L,L′ be residuated lattices. Then K is an ideal of L×L′ iff there
exist P ∈ Ii(L) and Q ∈ Ii(L′) such that K = P ×Q.
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P r o o f .

“ ⇒ ” If K ∈ Ii(L × L′), we consider P = {x ∈ L : (x, x′) ∈ K for some x′ ∈ L′}
and Q = {x′ ∈ L′ : (x, x′) ∈ K for some x ∈ L}.

Clearly, K = P × Q. Since (0, 0) ∈ K we get 0 ∈ P. Let x, y ∈ P. Then there exist
x′, y′ ∈ L′ such that (x, x′), (y, y′) ∈ K. Thus, (x, x′)⊕ (y, y′) = (x⊕ y, x′ ⊕ y′) ∈ K, so
x⊕ y ∈ P.

Let x ≤ y and y ∈ P. Then there exists x′ ∈ L′ such that (x, x′) ∈ K. Since
(x, x′) ≤ (y, x′), it follows that x ∈ P. So P ∈ Ii(L). Similarly, Q ∈ Ii(L′).

“ ⇐ ”. Let K = P × Q for some P ∈ Ii(L) and Q ∈ Ii(L′). Clearly, K ⊆ L × L′.
We consider (x, y), (p, q) ∈ K. Then x, p ∈ P and y, q ∈ Q, that is x⊕ p ∈ P, y ⊕ q ∈ Q.
Therefore, (x, y)⊕ (p, q) = (x⊕ p, y ⊕ q) ∈ P ×Q = K.

Now, let (p, q) ∈ K be such that (x, y) ≤ (p, q). Then x ≤ p with p ∈ P and y ≤ q
with q ∈ Q. Since P ∈ Ii(L) and Q ∈ Ii(L′), it follows that x ∈ P and y ∈ Q, that is
(x, y) ∈ K. Hence K ∈ Ii(L× L′). �

Corollary 3.11. Let
∏n

i=1 Li be a finite direct product of residuated lattices. Then
K is an ideal of

∏n
i=1 Li iff there exist Pi ∈ Ii(Li) such that K =

∏n
i=1 Pi, for every

1 ≤ i ≤ n.

3.2. �-prime ideals in residuated lattices

In this section, in order to establish the relationship between ideals and filters in resid-
uated lattices we define the subset of prime ideals called �-prime ideals.

Definition 3.12. A proper ideal P is called �-prime if it satisfies the condition: if
x� y ∈ P, then x ∈ P or y ∈ P.

Example 3.13. Let L = {0, n, a, b, c, d, 1} with 0 < n < a < b < c, d < 1, but c and d
are incomparable.

1

c d

b

a

n

0

Then ([13], page 229) L is a distributive residuated lattice with respect to the following
operations:
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→ 0 n a b c d 1
0 1 1 1 1 1 1 1
n d 1 1 1 1 1 1
a n n 1 1 1 1 1
b n n a 1 1 1 1
c 0 n a d 1 d 1
d n n a c c 1 1
1 0 n a b c d 1

� 0 n a b c d 1
0 0 0 0 0 0 0 0
n 0 0 0 0 n 0 n
a 0 0 a a a a a
b 0 0 a b b b b
c 0 n a b c b c
d 0 0 a b b d d
1 0 n a b c d 1

In the residuated lattice L from Example 3.13, if P = (n] = {0, n} then P is an
�-prime ideal.

Example 3.14. Let L = {0, a, b, c, d, e, f, g, 1} with 0 < a < b < e < 1, 0 < a < d <
e < 1, 0 < a < d < g < 1, 0 < c < d < e < 1, 0 < c < d < g < 1, 0 < c < f < g < 1 and
elements {a, c}, {b, d}, {d, f}, {e, g} and {b, f} are pairwise incomparable.

1

e g

b d f

a c

0

Then ([13], page 166) L is a residuated lattice with respect to the following operations:

→ 0 a b c d e f g 1
0 1 1 1 1 1 1 1 1 1
a g 1 1 g 1 1 g 1 1
b f g 1 f g 1 f g 1
c e e e 1 1 1 1 1 1
d d e e g 1 1 g 1 1
e c d e f g 1 f g 1
f b b b e e e 1 1 1
g a b b d e e g 1 1
1 0 a b c d e f g 1

� 0 a b c d e f g 1
0 0 0 0 0 0 0 0 0 0
a 0 0 a 0 0 a 0 0 a
b 0 a b 0 a b 0 a b
c 0 0 0 0 0 0 c c c
d 0 0 a 0 0 a c c d
e 0 a b 0 a b c d e
f 0 0 0 c c c f f f
g 0 0 a c c d f f g
1 0 a b c d e f g 1

Proposition 3.15. Every �-prime ideal is a prime ideal. The converse may not hold.

P r o o f . Let P be an �-prime. If, on the contrary, we assume that P is not a prime
ideal. For every x, y ∈ L, x ∧ y ∈ P, then x /∈ P and y /∈ P. Since x� y ≤ x ∧ y ∈ P, it
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follows that x � y ∈ P. Since x � y ∈ P and P is an �-prime ideal of L, we get x ∈ P
or y ∈ P, a contradiction. Therefore, P is a prime ideal of L.

In the residuated lattice L from Example 3.14, if we consider P = (b] = {0, a, b}, then
it is easy to ascertain that P is a prime ideal of L. Moreover, P is a maximal ideal of L.
Since e� d = a ∈ P and e /∈ P, d /∈ P, it follows that P is not �-prime. �

If we denote by �-SpecId(L) the set of all �-prime ideals of L, then from Proposition
3.15 we conclude that �-SpecId(L) ⊆ SpecId(L). In Stonean residuated lattices the
notions of �-prime and prime ideals coincide (see Proposition 12, [5]). However, in
Example 2.11, (a] = {0, a}, (d] = {0, c, d} are prime and �-prime ideals, and L is not
Stonean (a∗ ∨ a∗∗ = d ∨ a = m 6= 1).

Proposition 3.16. An ideal P is prime iff it is �-prime and, for all x, y ∈ L, x∧ y ∈ P
whenever x� y ∈ P.

P r o o f . Let P be a prime ideal and x, y ∈ L. By hypothesis, if x�y ∈ P, then x∧y ∈ P,
and so x ∈ P or y ∈ P (as P is a prime ideal). Therefore, P is �-prime. Conversely, if
x� y ∈ P, and by hypothesis P is �-prime, then x ∈ P or y ∈ P. Since x∧ y ≤ x, y and
x ∈ P or y ∈ P, it follows that x ∧ y ∈ P. �

For S ⊆ L we denote S = L \ S. The following result represents the relationship
between ideals and filters in residuated lattices.

Theorem 3.17. For M an ideal of L. Then M is a �-prime ideal iff M is a maximal
filter of L.

P r o o f . “ ⇒ ” Let M be an ideal of L. Assume that M is a �-prime ideal. By
Proposition 3.15, we get M is a prime ideal of L, and by definition, M is proper (that
is, M 6= L). From 0 ∈ M, we get 0 /∈ M, that is M 6= L. From M 6= L, it follows that
1 /∈M, hence 1 ∈M.

For x, y ∈ L with x ≤ y, assume x ∈ M, that is, x /∈ M. Clearly, y /∈ M, that is,
y ∈ M. We get x, y ∈ M, that is, x, y /∈ M. To prove M is a filter, by contrary, we
assume that x� y /∈ M, that is, x� y ∈ M. Since M is �-prime ideal, and x� y ∈ M,
then x ∈M or y ∈M, a contradiction.

Now, we prove M is a prime filter. Let x, y ∈ L such that x∨y ∈M, that is, x∨y /∈M.
By contrary, we assume that x /∈M and y /∈M, so x ∈M and y ∈M. From x∨ y /∈M,
since M is �-prime ideal and (x∨y)� (x∨y)∗ = 0 ∈M, we conclude that (x∨y)∗ ∈M.
By (c11), (x ∨ y)∗ = x∗ ∧ y∗, it follows that x∗ ∧ y∗ ∈ M. Since x∗ � y∗ ≤ x∗ ∧ y∗, we
get x∗ � y∗ ∈ M, hence x∗ ∈ M or y∗ ∈ M (as M is a �-prime ideal). For x∗ ∈ M,
since x ∈M, we have 1 = x⊕ x∗ ∈M, hence M = L, a contradiction. Analogously, for
y∗ ∈M. So, M is a prime filter.

Now, we prove M is a maximal filter. By contrary, if there is a proper filter Q of L
such that M ⊂ Q, that is, there is an element x ∈ Q \M. We get x ∈ Q ∩M, and so
x ∈M. Clearly, x∗ ∈M ⊂ Q, and so x∗ ∈ Q. Since x, x∗ ∈ Q and x� x∗ = 0 ∈ Q, then
Q = L, a contradiction. Therefore, M is not strictly included in a proper filter of L,
that is, M is a maximal filter of L.
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“ ⇐ ”. Let M be an ideal of L. We assume that M is a maximal filter of L. Since
1 ∈M, then 1 /∈M, that is, M is a proper ideal.

Now, we prove M is �-prime ideal. Let x, y ∈ L be such that x � y ∈ M, that
is, x � y /∈ M. Since M is a maximal filter, by Proposition 2.5, [(x � y)n]∗ ∈ M for
some n ≥ 1. If, on the contrary, x, y /∈ M, that is, x, y ∈ M, then x � y ∈ M, hence
(x� y)n ∈ M. Since (x� y)n, [(x� y)n]∗ ∈ M and 0 = (x� y)n � [(x� y)n]∗ ∈ M, we
conclude that M = L, a contradiction. �

Corollary 3.18. In L, every �-prime ideal is contained in an unique maximal ideal.

P r o o f . Let P be an �-prime ideal of L. From Proposition 3.15, we get that P is a
prime ideal of L. Since P is a prime ideal of L, it follows that P is a proper ideal of L.
Using Zorn’s Lemma we conclude that P is contained in a maximal ideal. Assume that
there are two distinct maximal ideals M1 and M2 such that P ⊆M1 and P ⊆M2. Since
M1 6= M2, there is a ∈ M1 such that a /∈ M2. By Theorem 3.9(iii), there is n ≥ 1 such
that (na)∗ ∈ M2. Then (na)∗∗ /∈ M2, hence (na)∗∗ /∈ P. Since a ∈ M1, then na ∈ M1,
hence (na)∗ /∈M1 and (na)∗ /∈ P. Since (na)∗�(na)∗∗ = 0 ∈ P, it follows that (na)∗ ∈ P
or (na)∗∗ ∈ P (as P is an �-prime ideal) a contradiction. �

4. DE MORGAN RESIDUATED LATTICES

In this section we study a special class of residuated lattices called De Morgan residuated
lattices.

4.1. General information

Definition 4.1. A residuated lattice L will be called De Morgan if it satisfies the iden-
tity (x ∧ y)∗ = x∗ ∨ y∗, for all x, y ∈ L.

In the residuated lattice L from Example 2.11 we have (a ∧ d)∗ = 0∗ = 1, a∗ ∨ d∗ =
d ∨ a = m, so (a ∧ d)∗ 6= a∗ ∨ d∗, that is L is not a De Morgan residuated lattice.

Examples of De Morgan residuated lattices are Boolean algebras, MV-algebras and
BL-algebras (see [14, 18]), MTL-algebras (see [7, 11]) and Stonean residuated lattices
(see [5]).

Every involution residuated lattice L is De Morgan. Indeed, if L has the involution
property and by (c11), then (x ∧ y)∗ = (x∗∗ ∧ y∗∗)∗ = [(x∗ ∨ y∗)∗]∗ = (x∗ ∨ y∗)∗∗ =
x∗ ∨ y∗.

In the following examples we show that the class of De Morgan residuated lattices
is a larger class than Boolean algebras, BL-algebras, Stonean residuated lattices, MTL-
algebras and involution residuated lattices.

Example 4.2. Let L={0, n, a, b, c, d, e, f,m, 1} with 0 < n < a < c < e < m < 1,
0 < n < b < d < f < m < 1 and the elements {a, b}, {c, d}, {e, f} are pairwise
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incomparable.

1

m

e f

c d

a b

n

0

Then L is a residuated lattice with respect to the following operations:

→ 0 n a b c d e f m 1
0 1 1 1 1 1 1 1 1 1 1
n m 1 1 1 1 1 1 1 1 1
a f f 1 f 1 f 1 f 1 1
b e e e 1 1 1 1 1 1 1
c d d e f 1 f 1 f 1 1
d c c c e e 1 1 1 1 1
e b b c d e f 1 f 1 1
f a a a c c e e 1 1 1
m n n a b c d e f 1 1
1 0 n a b c d e f m 1

� 0 n a b c d e f m 1
0 0 0 0 0 0 0 0 0 0 0
n 0 0 0 0 0 0 0 0 0 n
a 0 0 a 0 a 0 a 0 a a
b 0 0 0 0 0 0 0 b b b
c 0 0 a 0 a 0 a b c c
d 0 0 0 0 0 b b d d d
e 0 0 a 0 a b c d e e
f 0 0 0 b b d d f f f
m 0 0 a b c d e f m m
1 0 n a b c d e f m 1

It is easy to ascertain that L is a De Morgan residuated lattice. Since a ∧ b = n and
a � (a → b) = a � f = 0, it follows that a ∧ b 6= a � (a → b), consequently, L is not a
divisible residuated lattice, so L is not a BL-algebra. Since a∗ ∨ a∗∗ = f ∨ a = m 6= 1,
it follows that L is not a Stonean residuated lattice. Since (a→ b) ∨ (b→ a) = f ∨ e =
m 6= 1, it follows that L is not a MTL-algebra. Since b2 = b� b = 0 6= b, it follows that
L is not a G-algebra.

Example 4.3. Since the De Morgan residuated lattice from Example 4.2 is an involu-
tion residuated lattice, in this example we present a De Morgan residuated lattice with-
out the involution property: let L = {0, n, a, b, c, d, 1} with 0 < n < a < b, c < d < 1,
and b and c are incomparable.
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1

d

b c

a

n

0

Then ([13], page 247) L is a residuated lattice with respect to the following operations:

→ 0 n a b c d 1
0 1 1 1 1 1 1 1
n 0 1 1 1 1 1 1
a 0 d 1 1 1 1 1
b 0 c c 1 c 1 1
c 0 b b b 1 1 1
d 0 a a b c 1 1
1 0 n a b c d 1

� 0 n a b c d 1
0 0 0 0 0 0 0 0
n 0 n n n n n n
a 0 n n n n n a
b 0 n n b n b b
c 0 n n n c c c
d 0 n n b c d d
1 0 n a b c d 1

It is easy to ascertain that L is a De Morgan residuated lattice. Since n∗∗ = 1 6= n,
it follows that L is not an involution residuated lattice, however, L is Stonean.

Divisible residuated lattices are not always De Morgan as we can see in the following
example.

Example 4.4. Let L = {0, a, b, c, 1} with 0 < a, b < c < 1, and a and b are incompara-
ble.

1

c

a b

0

Then ([13], page 187) L is a residuated lattice with respect to the following operations:

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

� 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1
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It easy to see that L is a G-algebra, and so divisible. L is not a BL-algebra because
(a → b) ∨ (b → a) = b ∨ a = c 6= 1. Since (a ∧ b)∗ = 0∗ = 1 and a∗ ∨ b∗ = b ∨ a = c, it
follows that (a ∧ b)∗ 6= a∗ ∨ b∗, hence L is not De Morgan.

In conclusion, the class of De Morgan residuated lattices includes important sub-
classes of residuated lattices such as Boolean algebras, MV-algebras, BL-algebras, Stonean
residuated lattices, MTL-algebras and involution residuated lattices.

Remark 4.5. In Example 4.4 the residuated lattice L is a G-algebra, and so L is a semi-
G-algebra, but L is not De Morgan. Also, the residuated lattice L from Example 4.2 is a
De Morgan residuated lattice, but L is not a semi-G-algebra (because (b2)∗ = 0∗ = 1 6=
e = b∗). Therefore, the classes of semi-G-algebras and De Morgan residuated lattices
are different.

In what follows (unless otherwise specified) by L we denote a De Morgan residuated
lattice.

Lemma 4.6. If x, y, z ∈ L, then
(c22) (x ∧ y)∗∗ = x∗∗ ∧ y∗∗;
(c23) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z);
(c24) x ∧ (y ⊕ z) ≤ (x ∧ y)⊕ (x ∧ z).

P r o o f . (c22). We have (x ∧ y)∗∗ = [(x ∧ y)∗]∗ = (x∗ ∨ y∗)∗ (c11)
= x∗∗ ∧ y∗∗.

(c23). Since y∧ z ≤ y, z, by (c18) we conclude that x⊕ (y∧ z) ≤ x⊕y, x⊕ z. Consider
t ∈ L be such that t ≤ x ⊕ y, x ⊕ z. Then t ≤ (x ⊕ y) ∧ (x ⊕ z) = (x∗ → y∗∗) ∧ (x∗ →
z∗∗)

(c9)
= x∗ → (y∗∗ ∧ z∗∗) = x∗ → (y ∧ z)∗∗ = x⊕ (y ∧ z).

(c24). We have x∧ (y⊕ z) = x∧ (y∗� z∗)∗ ≤ x∗∗∧ (y∗� z∗)∗ = (x∗)∗∧ (y∗� z∗)∗ (c11)
=

[x∗ ∨ (y∗� z∗)]∗
(c8)

≤ [(x∗ ∨ y∗)� (x∗ ∨ z∗)]∗ = ((x∧ y)∗� (x∧ z)∗)∗ = (x∧ y)⊕ (x∧ z). �

Corollary 4.7. If x, y ∈ L and n ≥ 2, then
(c25) x ∧ (ny) ≤ n(x ∧ y).

P r o o f . Mathematical induction relative to n, using (c24). �

Corollary 4.8. If x, y ∈ L and m ≥ 2 or n ≥ 2, then
(c26) (mx) ∧ (ny) ≤ (mn)(x ∧ y).

P r o o f . Assume m ≥ 2. If n = 0 in (c26) we have equality. If n = 1, (c26) follows from
(c25).

If n ≥ 2, by (c25) we conclude that (mx) ∧ (ny) ≤ n[(mx) ∧ y] ≤ n[m(x ∧ y)] =
(mn)(x ∧ y).

Analogously, if n ≥ 2. �
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4.2. Ideals and prime ideals

Proposition 4.9. Let I ∈ Ii(L) and a, b ∈ L such that a∧ b ∈ I. Then I(a)∩ I(b) = I.

P r o o f . Clearly, I ⊆ I(a) ∩ I(b). To prove the converse inclusion, let x ∈ I(a) ∩ I(b).
Then there are d1, d2 ∈ I and m,n ≥ 1 such that x ≤ d1⊕ (ma) and x ≤ d2⊕ (nb). Since
a ∧ b ∈ I, I is an ideal of L, and, by Proposition 3.6, (c23), (c25) and (c26), we obtain
successively x ≤ [d1⊕(ma)]∧[d2⊕(nb)] ≤ (d1∧d2)⊕[(ma)∧(nb)]⊕[d1∧(nb)]⊕[d2∧(ma)] ∈
I, hence x ∈ I. Therefore, I(a) ∩ I(b) = I. �

Corollary 4.10. For I ∈ Ii(L) the following conditions are equivalent:

(i) If I = I1 ∩ I2 with I1, I2 ∈ Ii(L), then I = I1 or I = I2;

(ii) For a, b ∈ L, if a ∧ b ∈ I, then a ∈ I or b ∈ I.

P r o o f . (i) ⇒ (ii) If a, b ∈ L are such that a ∧ b ∈ I, then by Proposition 4.9,
I(a) ∩ I(b) = I, hence I = I(a) or I = I(b), so a ∈ I or b ∈ I.

(ii) ⇒ (i) Let I1, I2 ∈ Ii(L) such that I = I1 ∩ I2. If, on the contrary, I 6= I1 and
I 6= I2, then there are a ∈ I1 \ I and b ∈ I2 \ I. Since I is an ideal of L and a ∧ b ≤ a, b,
it holds that a∧ b ∈ I1 ∩ I2 = I, so a ∈ I or b ∈ I, a contradiction. Therefore, I = I1 or
I = I2. �

Proposition 4.11. (i) If I ∈ Ii(L) and x, y ∈ L, then I(x) ∩ I(y) ⊆ I(x ∧ y);

(ii) The lattice (Ii(L),⊆) is distributive.

P r o o f . (i). If z ∈ I(x) ∩ I(y), following Proposition 3.7(iii), z ≤ i ⊕ (mx), j ⊕ (ny)
with i, j ∈ I and m,n ≥ 1.

Let k = i ⊕ j ∈ I, then z ≤ k ⊕ (mx), k ⊕ (ny), so we obtain successively z ≤

(k ⊕ (mx)) ∧ (k ⊕ (ny))
(c23)
= k ⊕ ((mx) ∧ (ny))

(c26)

≤ k ⊕ [(mn)(x ∧ y)] ∈ I(x ∧ y),
consequently z ∈ I(x ∧ y). Therefore, I(x) ∩ I(y) ⊆ I(x ∧ y).

(ii). Consider I, I1, I2 ∈ Ii(L). We have that I1 ∨ I2 = {z ∈ L : z ≤ i1 ⊕ i2 with i1 ∈
I1, and i2 ∈ I2}.

Clearly, (I ∩ I1) ∨ (I ∩ I2) ⊆ I ∩ (I1 ∨ I2).
To prove I ∩ (I1 ∨ I2) ⊆ (I ∩ I1)∨ (I ∩ I2), consider z ∈ I ∩ (I1 ∨ I2). Then z ∈ I and

z ≤ i1 ⊕ i2 with i1 ∈ I1, and i2 ∈ I2.

We have z = z ∧ (i1 ⊕ i2)
(c24)

≤ (z ∧ i1)⊕ (z ∧ i2).
Since z ∧ i1 ∈ I1 and z ∧ i2 ∈ I2 we conclude that z ∈ (I ∩ I1) ∨ (I ∩ I2), hence

I ∩ (I1 ∨ I2) ⊆ (I ∩ I1) ∨ (I ∩ I2). Therefore, the lattice (Ii(L),⊆) is distributive. �

Proposition 4.12. The lattice (Ii(L),⊆) is a complete Brouwerian lattice.

P r o o f . Let Λ be an index set. By Proposition 3.7(iv), we have that the lattice
(Ii(L),⊆) is complete. In order to prove that Ii(L) is Brouwerian we must show that
for every ideal I and every family (Ii)i∈Λ of ideals, I ∧i∈Λ (∨i∈ΛIi) = ∨i∈Λ(I ∧i∈Λ Ii),
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that is, I ∩ (∨i∈ΛIi) = (∪i∈Λ(I ∩ Ii)]. Clearly, (∪i∈Λ(I ∩ Ii)] ⊆ I ∩ (∨i∈ΛIi). Now, let
x ∈ I ∩ (∨i∈ΛIi). Then x ∈ I and there exist i1, . . . , im ∈ Λ, xij ∈ Iij , (1 ≤ j ≤ m) such
that x ≤ xi1 ⊕ xi2 ⊕ · · · ⊕ xim (as x ∈ ∨i∈ΛIi). Then x = x ∧ (xi1 ⊕ xi2 ⊕ · · · ⊕ xim) ≤
(x ∧ xi1) ⊕ · · · ⊕ (x ∧ xim) by (c24). Since x ∧ xij ∈ I ∩ Iij for every 1 ≤ j ≤ m, we
conclude that x ∈ (∪i∈Λ(I∩Ii)], hence I∩(∨i∈ΛIi) ⊆ (∪i∈Λ(I∩Ii)], that is, I∩(∨i∈ΛIi) =
(∪i∈Λ(I ∩ Ii)].

Therefore, (Ii(L),⊆) is a complete Brouwerian lattice. �

Theorem 4.13. For P ∈ Ii(L), the following conditions are equivalent:

(i) P is ∩-prime;

(ii) P is ∩-irreducible;

(iii) If x, y ∈ L and x ∧ y ∈ P, then x ∈ P or y ∈ P.

P r o o f . The equivalence of (i) and (ii) follows from Proposition 4.11(ii) due to the
well known fact that, in a distributive lattice, an element is meet-irreducible iff it is
meet-prime.

The equivalence of (ii) and (iii) is already stated in Corollary 4.10. �

We conclude that P ∈ Ii(L) is prime iff P is ∩-prime.

Theorem 4.14. (Prime ideal theorem in De Morgan residuated lattices)
Let L be a De Morgan residuated lattice, I ∈ Ii(L), S ⊆ L a nonempty ∧-closed

subset of L such that S ∩ I = ∅. Then there is a prime ideal P of L such that I ⊆ P
and P ∩ S = ∅.

P r o o f . Consider the set II = {J ∈ Ii(L) : I ⊆ J and S ∩ J = ∅}. Since I ∈ II , then
II 6= ∅. By Zorn’s Lemma we conclude that in II we have a maximal element P. We
want to prove that P is prime ideal. Clearly, P 6= L. By contrary, we assume that there
are a, b ∈ L such that a∧ b ∈ P, but a, b /∈ P. Since a∧ b ∈ P, we have P (a∧ b) = P. By
the maximality of P we conclude that P (a) ∩ S 6= ∅ and P (b) ∩ S 6= ∅.

By Proposition 3.7(iii), we conclude that there are s1, s2 ∈ S such that s1 ≤ i ⊕
ma, s2 ≤ j ⊕ nb, with i, j ∈ P and m,n ≥ 1. If consider k = i ⊕ j ∈ P, then s1 ∧ s2 ≤
(k ⊕ma) ∧ (k ⊕ nb) (c23)

= k ⊕ (ma ∧ nb).
If m ≥ 2 or n ≥ 2, then using (c26) we conclude that s1 ∧ s2 ≤ k ⊕ [(ma) ∧ (nb)] ≤

k ⊕ [(mn)(a ∧ b)] ∈ P (a ∧ b) = P, hence s1 ∧ s2 ∈ P (a ∧ b) = P.
Ifm = n = 1, then by (c23) we have s1∧s2 ≤ (k⊕a)∧(k⊕b) ≤ k⊕(a∧b) ∈ P (a∧b) = P

and again we conclude that s1∧s2 ∈ P (a∧b) = P. Then s1∧s2 ∈ P (a∧b)∩S = P∩S = ∅,
a contradiction. So, P is a prime ideal of L. �

Remark 4.15. If L is nontrivial, then any proper ideal of L can be extended to a prime
ideal. In general, the set of ideals of L including prime ideals is not a chain. Indeed,
in the De Morgan residuated lattice L from Example 3.14, the ideals of L are (0] =
{0}, (b] = {0, a, b} and (f ] = {0, c, f}, but (b] * (f ], (f ] * (b], so Ii(L) = {(0], (b], (f ]} is
not a chain.
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The following result is a consequence of Theorem 4.14:

Corollary 4.16. Let I ∈ Ii(L) and a ∈ L \ I. Then:

(i) There is P ∈ SpecId(L) such that I ⊆ P and a /∈ P ;

(ii) I is the intersection of those prime ideals which contain I;

(iii) ∩SpecId(L) = {0}.

In the following theorem we show that every maximal ideal is prime in De Morgan
residuated lattices.

Proposition 4.17. MaxId(L) ⊆ SpecId(L).

P r o o f . We prove MaxId(L) ⊆ SpecId(L). Let M ∈ MaxId(L). If there exist two
proper ideals N,P ∈ Ii(L) such that M = N ∩ P, then M ⊆ N and M ⊆ P, by the
maximality of M we conclude that M = N = P, that is, M is an ∩-irreducible, so prime
element in the lattice of ideals (Ii(L),⊆), by Theorem 4.13. �

Example 4.18. This example shows that in general in de Morgan residuated lattices,
if I is a prime ideal, then I is not always maximal.

It is easy to ascertain that the residuated lattice L from Example 3.13 is a De Morgan
residuated lattice. Clearly, (0] = {0} is a prime ideal of L, (a] = (b] = (c] = (d] = (1] = L
and (n] = {0, n} is a maximal (obviously, prime) ideal of L. Therefore, (0] ⊂ (n], so (0]
is a prime ideal, but not maximal.

Corollary 4.19. If L is a semi-G-algebra, then MaxId(L) = SpecId(L).

P r o o f . Let L be a De Morgan residuated lattice that is a semi-G-algebra. By Propo-
sition 4.17 we have MaxId(L) ⊆ SpecId(L). By Proposition 9, ([5]) a residuated lattice
L is semi-G-algebra iff x ∧ x∗ = 0 for every x ∈ L.

Now, we prove that SpecId(L) ⊆MaxId(L). Let I ∈ SpecId(L) be a prime ideal and,
if there is M a proper ideal such that I ⊂M. Then there is an element x ∈M \ I. Since
x /∈ I, I is prime ideal, and x ∧ x∗ = 0 ∈ I, it follows that x∗ ∈ I. Since x∗ ∈ I ⊂ M,
we get x∗ ∈ M. We get x, x∗ ∈ M and x ⊕ x∗ = 1 ∈ M, consequently M = L, a
contradiction. Therefore, I is not strictly contained in a proper ideal of L, that is, I is
a maximal ideal of L. Therefore, SpecId(L) = MaxId(L). �

Example 4.20. The converse of Corollary 4.19, may not hold as we can see in this
example.

It is easy to ascertain that the residuated lattice L from Example 3.14 is a De Morgan
residuated lattice. Since (d2)∗ = 0∗ = 1, d∗ = d, we conclude that (d2)∗ 6= d∗, so L is not
a semi-G-algebra. The proper ideals of L are (0] = {0}, (b] = {0, a, b}, and (f ] = {0, c, f},
and MaxId(L) = SpecId(L) = {(b], (f ]}. Therefore, MaxId(L) = SpecId(L) and L is
not a semi-G-algebra. Moreover, since a∗ ∨ a∗∗ = g ∨ a = g 6= 1, it follows that L is not
Stonean.
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We recall (see Theorem 3.2) that: If I is an ideal of a residuated lattice L, then the
binary relation θI on L ((x, y) ∈ θI iff x∗ � y ∈ I and x � y∗ ∈ I) is a congruence
on the reduct (L,�,∨,→, 0, 1) of the residuated lattice L. Moreover, if L is a pseudo
BL-algebra, then θI is a congruence on L. In the following result, we show: if L is a De
Morgan residuated lattice, then θI is a congruence on L.

Theorem 4.21. In L, θI is a congruence.

P r o o f . By Theorem 3.2 we have θI is a congruence on the reduct (L,�,∨,→, 0, 1) of
the residuated lattice L. It remains to prove that θI is compatible with the operation
∧. Let x, y, z, t ∈ L, we assume that (x, y) ∈ θI and (z, t) ∈ θI and we must to prove
that (x ∧ z, y ∧ t) ∈ θI . We have (x, y) ∈ θI iff x∗ � y ∈ I and x � y∗ ∈ I, and
(z, t) ∈ θI iff z∗ � t ∈ I and z � t∗ ∈ I. Since x ∧ z ≤ z and z � t∗ ∈ I, we obtain
(x ∧ z) � t∗ ≤ z � t∗ ∈ I, and then (x ∧ z) � t∗ ∈ I. Since x ∧ z ≤ x and x � y∗ ∈ I,
we obtain (x ∧ z) � y∗ ≤ x � y∗ ∈ I, and then (x ∧ z) � y∗ ∈ I. Since I is an ideal

and (x ∧ z)� t∗ ∈ I, (x ∧ z)� y∗ ∈ I, it follows that [(x ∧ z)� t∗] ∨ [(x ∧ z)� y∗]
(c16)

≤
[(x ∧ z)� t∗]⊕ [(x ∧ z)� y∗] ∈ I, and so [(x ∧ z)� t∗] ∨ [(x ∧ z)� y∗] ∈ I. By (c7), we

get (x ∧ z)� (y∗ ∨ t∗) (c7)
= [(x ∧ z)� t∗] ∨ [(x ∧ z)� y∗] ∈ I. Since (y∗ ∨ t∗) = (y ∧ t)∗, it

holds that (x ∧ z)� (y ∧ t)∗ ∈ I.
Since y ∧ t ≤ y and y � x∗ ∈ I, likewise (x ∧ z)∗ � (y ∧ t) ∈ I.
Therefore, (x ∧ z)� (y ∧ t)∗ ∈ I and (x ∧ z)∗ � (y ∧ t) ∈ I iff (x ∧ z, y ∧ t) ∈ θI . �

For x ∈ L we denote by x/I the congruence class of x modulo θI and L/I = {x/I :
x ∈ L}. Define the binary operations ∨,∧,� and→ on L/I by (x/I)∨(y/I) = (x∨y)/I,
(x/I) ∧ (y/I) = (x ∧ y)/I, (x/I) � (y/I) = (x � y)/I and (x/I) → (y/I) = (x → y)/I
for all x, y ∈ L. Then (L/I,∨,∧,�,→,0,1) is a De Morgan residuated lattice, which is
called the quotient De Morgan residuated lattice of L with respect to I, where 0 = 0/I
and 1 = 1/I. The order relation on L/I is defined by (x/I) ≤ (y/I) iff (x → y)∗ ∈ I.
For a nonempty subset S of L we denote by S/I = {x/I : x ∈ S}. Clearly, for x ∈ L,
x/I = 1 iff x∗ ∈ I and x/I = 0 iff x ∈ I.

Corollary 4.22. (L/I,∨,∧,�,→,0,1) is an involution residuated lattice.

P r o o f . Let I be an ideal of L. Since for all x ∈ L, (x, x∗∗) ∈ θI iff x∗�x∗∗ = 0 ∈ I and
x�x∗∗∗ = x�x∗ = 0 ∈ I, then x/I = x∗∗/I. Therefore, L/I is an involution residuated
lattice. �

4.3. Annihilators

We recall that by L we denote a De Morgan residuated lattice (unless otherwise speci-
fied). In this section some results may hold in residuated lattices, we will use comments
to specify this fact.

Definition 4.23. Let S be a nonvoid subset of L, then we say the set S⊥ = {x ∈ L :
a ∧ x = 0 for all a ∈ S} is an annihilator of S.
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In Example 3.14, if S = (f ] = {0, c, f} then it is easy to check that S⊥ = {0, a, b} =
(b].

Proposition 4.24. Let S be a subset of L. Then S⊥ is an ideal of L. Moreover, if
S 6= {0}, then S⊥ is a proper ideal of L.

P r o o f . For every a ∈ S, we have a ∧ 0 = 0, hence 0 ∈ S⊥, which implies S⊥ is
nonempty.

Assume that y ∈ S⊥, x ≤ y, since for all a ∈ S, x ∧ a ≤ y ∧ a = 0, then we have
x ∧ a = 0, that is, x ∈ S⊥. Hence, S⊥ is a down set.

Assume that x, y ∈ S⊥. Let a ∈ S, then a∧x = a∧y = 0. Then we obtain successively

a∧ (x⊕ y)
(c24)

≤ (a∧ x)⊕ (a∧ y) = 0⊕ 0 = 0, hence a∧ (x⊕ y) = 0, that is, x⊕ y ∈ S⊥.
Therefore, S⊥ is an ideal of L.

If S 6= {0}, then there is a ∈ S such that a 6= 0, so 1 ∧ a = a 6= 0, then we have
1 /∈ S⊥. Therefore, S⊥ is proper. �

From Proposition 4.24 we notice that the annihilators of nonvoid subsets of any
residuated lattice L are down sets. Moreover, if L is a De Morgan residuated lattice, it
follows that the annihilators of nonvoid subsets of L are special kind of ideals.

Proposition 4.25. Let L be a residuated lattice. For all a, b, x, y ∈ L, the following
assertions hold:

(1) {1}⊥ = {0} and {0}⊥ = L;
(2) if a ≤ b, then {b}⊥ ⊆ {a}⊥ and {a}⊥⊥ ⊆ {b}⊥⊥;
(3) if L is distributive, then {a}⊥ ∩ {b}⊥ = {a ∨ b}⊥;
(4) {a}⊥ ∪ {b}⊥ ⊆ {a ∧ b}⊥;
(5) if x ∈ {a}⊥, then a ≤ x∗ and x ≤ a∗;
(6) if x ∈ {a}⊥, y ∈ {b}⊥, then x� y, x ∧ y ∈ {a ∧ b}⊥;
(7) if x ∈ {a}⊥, y ∈ {a ∨ b}⊥, then x ∧ y ∈ {a ∧ b}⊥;
(8) if x ∈ {a}⊥, y ∈ {a→ b}⊥, then x ∧ y ∈ {a ∧ b}⊥;
(9) if x ∈ {a}⊥, y ∈ {b}⊥, then x� y, x ∧ y ∈ {a� b}⊥.

P r o o f . (1) For all x ∈ {1}⊥, x = x ∧ 1 = 0, so x = 0, which implies {1}⊥ = {0}. For
all x ∈ L, since x ∧ 0 = 0, we have L ⊆ {0}⊥, and evidently, {0}⊥ ⊆ L, so {0}⊥ = L.

(2) For all x ∈ {b}⊥, we have a ∧ x ≤ b ∧ x = 0, so a ∧ x = 0. Therefore, x ∈ {a}⊥.
The rest is clear.

(3) By distributivity of L and (c7), we have successively x ∈ {a}⊥∩{b}⊥ iff x ∈ {a}⊥
and x ∈ {b}⊥ iff x ∧ a = 0 and x ∧ b = 0 iff (x ∧ a) ∨ (x ∧ b) = 0 iff x ∧ (a ∨ b) = 0 iff
x ∈ {a ∨ b}⊥.

(4) If x ∈ {a}⊥ ∪ {b}⊥, then x ∈ {a}⊥ or x ∈ {b}⊥, so x ∧ a = 0 or x ∧ b = 0. Hence
x ∧ a ∧ b = 0. Therefore, x ∈ {a ∧ b}⊥.

(5) If x ∈ {a}⊥, we get a� x ≤ a ∧ x = 0, so a� x ≤ 0 and by residuation property
we get a ≤ x∗ and x ≤ a∗.
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(6) Since x ∈ {a}⊥, y ∈ {b}⊥ and a∧ b ≤ a, b, by item (2), we have {a}⊥ ⊆ {a∧ b}⊥,
{b}⊥ ⊆ {a ∧ b}⊥, so x, y ∈ {a ∧ b}⊥. Since {a ∧ b}⊥ is a down set, we get x� y, x ∧ y ∈
{a ∧ b}⊥.

(7) Since y ∈ {a ∨ b}⊥ and b ≤ a ∨ b, by item (2), we have {a ∨ b}⊥ ⊆ {b}⊥, so
y ∈ {b}⊥, since {b}⊥ is a down set, we get x ∧ y ∈ {b}⊥ ⊆ {a ∧ b}⊥.

(8) Since y ∈ {a → b}⊥ and b ≤ a → b, by item (2), we get {a → b}⊥ ⊆ {b}⊥, so
y ∈ {b}⊥. Since {b}⊥ is a down set, we get x ∧ y ∈ {b}⊥ ⊆ {a ∧ b}⊥.

(9) Since x ∈ {a}⊥, y ∈ {b}⊥ and a� b ≤ a, b, by item (2), we have {a}⊥ ⊆ {a� b}⊥,
{b}⊥ ⊆ {a�b}⊥, so x, y ∈ {a�b}⊥, and since {a�b}⊥ is a down set, we get x�y, x∧y ∈
{a� b}⊥.

Alternatively, the items (7), (8) and (9) follow from (6). �

In Proposition 4.25 we notice that the items (1), (2) – (9) may hold in residuated
lattices because in their proofs we used the fact that an annihilator is a down set.

Proposition 4.26. For all a, b, x, y ∈ L, the following assertions hold:

(1) if x ∈ {a}⊥, y ∈ {b}⊥, then x ∨ y, x⊕ y ∈ {a� b}⊥;

(2) if x ∈ {a}⊥, y ∈ {b}⊥, then x ∨ y, x⊕ y ∈ {a ∧ b}⊥.

P r o o f . (1) Since x ∈ {a}⊥, y ∈ {b}⊥ and a � b ≤ a, b, likewise in the proof of
Proposition 4.25 (9), we have x, y ∈ {a� b}⊥, and so x∨ y ∈ {a� b}⊥, x⊕ y ∈ {a� b}⊥,
as {a� b}⊥ is an ideal of L.

(2) Since x ∈ {a}⊥, y ∈ {b}⊥ likewise in in the proof of Proposition 4.25 (6) we get
x, y ∈ {a ∧ b}⊥, and so x ∨ y, x⊕ y ∈ {a ∧ b}⊥, as {a ∧ b}⊥ is an ideal of L. �

In Proposition 4.26 we notice that the items (1) and (2) hold in De Morgan residuated
lattices because we used the fact that an annihilator is an ideal.

Remark 4.27. In [11] an open problem was proposed: find the necessary conditions for
a residuated lattice to be distributive. The assertion from Proposition 4.25, (3) represent
a necessary condition for distributivity, but is not a necessary and sufficient condition
as we can see in what follows.

The residuated lattice L from Example 2.11 is not distributive because c ∨ (a ∧ d) =
c∨0 = c, (c∨a)∧(c∨d) = m∧d = d and c 6= d. But {a}⊥ = (d] = {0, c, d}, {d}⊥ = (a] =
{0, a}, {a}⊥ ∩ {d}⊥ = {0} and {a∨ d}⊥ = {m}⊥ = {0}, hence {a}⊥ ∩ {d}⊥ = {a∨ d}⊥.
Therefore, the converse of Proposition 4.25(3) may not hold.

In Example 3.14 we have {b}⊥ = {0, c, f}, {f}⊥ = {0, a, b} and b ∧ f = 0, so
{b}⊥ ∪ {f}⊥ = {0, a, b, c, f}. Hence {0}⊥ = L * {b}⊥ ∪ {f}⊥. Therefore, the inclusion
in Proposition 4.25, (4) is proper.

Proposition 4.28. For X,Y ⊆ L, the following assertions hold:
(1) X⊥ = ∩x∈X{x}⊥;
(2) If X 6= ∅, then (X] ∩X⊥ = {0};
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(3) If X ⊆ Y, then Y ⊥ ⊆ X⊥;
(4) If L is distributive and X is a linear ideal of L (which means that X is totally

ordered). Then X⊥ is prime.
(5) X ⊆ X⊥⊥;
(6) X⊥ = X⊥⊥⊥;
(7) X⊥ = (X]⊥;
(8) L⊥ = {0};
(9) X⊥ ∩X⊥⊥ = {0};
(10) (X ∪ Y )⊥ = X⊥ ∩ Y ⊥;
(11) X⊥ ∪ Y ⊥ ⊆ (X ∩ Y )⊥;
(12) For all a, b ∈ L, if a ∈ X⊥, b ∈ Y ⊥, then a∧ b ∈ (X ∪Y )⊥ and a∨ b ∈ (X ∩Y )⊥;
(13) X⊥ ∩ Y ⊥ = {0} iff X⊥ ⊆ Y ⊥⊥ and Y ⊥ ⊆ X⊥⊥.

P r o o f . (1) a ∈ X⊥ iff a ∧ x = 0, for all x ∈ X iff a ∈ {x}⊥, for all x ∈ X iff
a ∈ ∩x∈X{x}⊥.

(2) Assume a ∈ (X]∩X⊥. Then a ∈ (X] and a ∈ X⊥. By Proposition 3.7(i) we have
a ≤ x1⊕x2⊕· · ·⊕xn, for some x1, x2, . . . , xn ∈ X. And a∧xi = 0, for all i = 1, 2, . . . , n.

By (c24) we obtain successively a ≤ a ∧ (x1 ⊕ x2 ⊕ · · · ⊕ xn) ≤ (a ∧ x1)⊕ (a ∧ x2)⊕
· · · ⊕ (a ∧ xn) = 0⊕ 0⊕ · · · ⊕ 0 = 0. Therefore, a = 0, that is, (X] ∩X⊥ = {0}.

(3) Let y ∈ Y. If z ∈ Y ⊥, we have z ∧ y = 0. Then for any x ∈ X ⊆ Y, z ∧ x = 0, and
so z ∈ ∩x∈X{x}⊥ = X⊥ by item (1). Therefore, Y ⊥ ⊆ X⊥.

(4) Let L be a distributive residuated lattice. Assume that X is an ideal which is
linear (totally ordered), and x ∧ y ∈ X⊥, but x, y /∈ X⊥. Then there are x′, x

′′ ∈ X,
such that x ∧ x′ 6= 0, and y ∧ x′′ 6= 0. Set z = x′ ∨ x′′

. Then z ∈ X, as X is an ideal of
L. By the distributivity of L we obtain x ∧ z = x ∧ (x′ ∨ x′′

) = (x ∧ x′) ∨ (x ∧ x′′
) 6= 0.

Similarly, we have y ∧ z 6= 0. Since x∧ z ≤ z, y ∧ z ≤ z, we conclude x∧ z, y ∧ z ∈ X, as
z ∈ X and X is an ideal.

As X is linear (totally ordered), we may assume that x∧ z ≤ y∧ z. Since x∧ y ∈ X⊥
and z ∈ X, it follows that 0 = (x∧y)∧ z = x∧ (y∧ z) ≥ x∧ (x∧ z) = x∧ z, so x∧ z = 0,
that is, x ∈ X⊥, a contradiction. Therefore, X⊥ is prime.

(5) By the definition of annihilator, we haveX⊥⊥ = {a ∈ L : a∧x = 0 for all x ∈ X⊥}.
So, for all x ∈ X⊥, if b ∈ X, then b ∧ x = 0, that is, b ∈ X⊥⊥.

(6) By item (5), tacking X = X⊥, we have X⊥ ⊆ X⊥⊥⊥. Conversely, by item
(5) we have X ⊆ X⊥⊥, and by item (2) we conclude that X⊥⊥⊥ ⊆ X⊥. Therefore,
X⊥ = X⊥⊥⊥.

(7) Since X ⊆ (X], by item (2), we have (X]⊥ ⊆ X⊥. Now, we prove that X⊥ ⊆ (X]⊥.
Let a ∈ X⊥. So for any x ∈ X we have a ∧ x = 0. For any z ∈ (X], there are
x1, x2, . . . , xn ∈ X such that z ≤ x1 ⊕ x2 ⊕ · · · ⊕ xn. By (c24), we obtain successively
a∧ z ≤ a∧ (x1⊕x2⊕· · ·⊕xn) ≤ (a∧x1)⊕ (a∧x2)⊕· · ·⊕ (a∧xn) = 0⊕0⊕· · ·⊕0 = 0.
Therefore, a ∧ z = 0, that is, a ∈ (X]⊥, and so X⊥ ⊆ (X]⊥. Therefore, X⊥ = (X]⊥.

(8) If a ∈ L⊥, then a = 1 ∧ a = 0 for 1 ∈ L. Therefore, L⊥ = {0}.
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(9) Clearly, {0} ⊆ X⊥ ∩ X⊥⊥. Conversely, if x ∈ X⊥ ∩ X⊥⊥, by the definition of
annihilators we have x = x∧ x = 0. So X⊥ ∩X⊥⊥ ⊆ {0}. Therefore, X⊥ ∩X⊥⊥ = {0}.

(10) Since X ⊆ X ∪ Y and Y ⊆ X ∪ Y, it follows that (X ∪ Y )⊥ ⊆ X⊥ and
(X ∪ Y )⊥ ⊆ Y ⊥, so (X ∪ Y )⊥ ⊆ X⊥ ∩ Y ⊥. Conversely, for any a ∈ X⊥ ∩ Y ⊥, we
have a ∈ X⊥ and a ∈ Y ⊥, that is, for any x ∈ X, y ∈ Y, we have a ∧ x = 0 and
a∧y = 0. So for any t ∈ X∪Y, we always have a∧ t = 0, hence a ∈ (X∪Y )⊥. Therefore,
(X ∪ Y )⊥ = X⊥ ∩ Y ⊥.

(11) Since X ∩Y ⊆ X and X ∩Y ⊆ Y, we have X⊥ ⊆ (X ∩Y )⊥ and Y ⊥ ⊆ (X ∩Y )⊥.
Therefore, X⊥ ∪ Y ⊥ ⊆ (X ∩ Y )⊥.

(12) If a ∈ X⊥, b ∈ Y ⊥, then a ∧ b ∈ X⊥ and a ∧ b ∈ Y ⊥, so a ∧ b ∈ X⊥ ∩ Y ⊥ =
(X ∪ Y )⊥.

If a ∈ X⊥, b ∈ Y ⊥, then a ∈ X⊥ ⊆ (X ∩ Y )⊥ and b ∈ Y ⊥ ⊆ (X ∩ Y )⊥, so
a ∨ b ∈ (X ∩ Y )⊥.

(13) For all a ∈ X⊥, b ∈ Y ⊥, we have a∧ b ∈ X⊥∩Y ⊥, since X⊥∩Y ⊥ = {0}, we get
a∧ b = 0, by definition of annihilator, we get a ∈ Y ⊥⊥ and b ∈ X⊥⊥, so X⊥ ⊆ Y ⊥⊥ and
Y ⊥ ⊆ X⊥⊥. Conversely, if X⊥ ⊆ Y ⊥⊥ and Y ⊥ ⊆ X⊥⊥, then X⊥ ∩ Y ⊥ ⊆ Y ⊥⊥ ∩ Y ⊥ =
{0}, so X⊥ ∩ Y ⊥ ⊆ {0}. Clearly, {0} ⊆ X⊥ ∩ Y ⊥. Therefore, X⊥ ∩ Y ⊥ = {0}. �

Remark 4.29. The residuated lattice L from Example 2.12 is not distributive because
c∨ (a∧d) = c∨0 = c, (c∨a)∧ (c∨d) = m∧d = d and c 6= d. But {b}⊥ = (d] = {0, c, d},
{d}⊥ = (b] = {0, a, b} are prime ideals of L and they are linear (totally ordered), too.
Therefore, the assertion from Proposition 4.28(3) represent a necessary condition for
distributivity, but is not a necessary and sufficient condition, as we can see the converse
may not hold.

In Example 2.12. If X = {0, a, b}, Y = {0, c, d}, then X ∩ Y = {0}, so we have
X⊥ = Y, Y ⊥ = X, and (X ∩ Y )⊥ = {0}⊥ = L. Hence L = (X ∩ Y )⊥ * X⊥ ∪ Y ⊥ =
Y ∪X = L \ {m, 1}. Therefore, the inclusion in Proposition 4.28, (11) is proper.

Theorem 4.30. The ideal lattice Ii(L) is pseudo-complemented and for any ideal I of
L, its pseudo-complement is I⊥.

P r o o f . By Proposition 4.28(1), we have I ∩ I⊥ = {0}. Let G be an ideal of L such
that I ∩G = {0}, we shall prove that G ⊆ I⊥. Let a ∈ G, for any x ∈ I, then we have
x ∧ a ≤ x ∈ I, x ∧ a ≤ a ∈ G, so x ∧ a ∈ I ∩G = {0}. Hence x ∧ a = 0, for any x ∈ I,
then we have a ∈ I⊥. So I⊥ is the largest ideal such that I ∩G = {0}. Therefore, I⊥ is
the pseudo-complement of I. �

By An(L) = {X⊥ : X ⊆ L} we denote the set of all annihilators of L. Since X⊥ =
(X]⊥, we get that An(L) = {I⊥ : I ∈ Ii(L)}. Hence An(L) is the set of pseudo-
complements of the pseudo-complemented lattice Ii(L).

Proposition 4.31. Let I, J ∈ Ii(L). Then:

(1) {0}, L, I⊥ ∈ An(L);
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(2) I ∈ An(L) iff I = I⊥⊥;

(3) ⊥⊥ : X → X⊥⊥ is a closure map;

(4) I ∩ (I ∩ J)⊥ = I ∩ J⊥;

(5) (I ∩ J)⊥⊥ = I⊥⊥ ∩ J⊥⊥;

(6) If I, J ∈ An(L), then I ∧An(L) J = I ∩ J ;

(7) (I ∨ J)⊥ = I⊥ ∩ J⊥;

(8) If I, J ∈ An(L), then I ∨An(L) J = (I ∨ J)⊥⊥ = (I⊥ ∩ J⊥)⊥.

P r o o f . (1) By Propositions 4.25 and 4.28.

(2) Assume that I ∈ An(L), then there exists X ⊆ L such that X⊥ = I, so we get
I⊥⊥ = X⊥⊥⊥ = X⊥ = I. The converse is clear.

(3) By Proposition 4.28, we know the function f : X → X⊥⊥ is isotone (see item
(2)) and we get that f = f2 ≥ idL (see items (4) – (7)). So, X → X⊥⊥ is a closure map.

(4) Since (I ∩ J) ∩ (I ∩ J)⊥ = {0}. By Theorem 4.30, we get I ∩ (I ∩ J)⊥ ⊆ J⊥

and so I ∩ (I ∩ J)⊥ ⊆ I ∩ J⊥. Conversely, by I ∩ J ⊆ J, we get J⊥ ⊆ (I ∩ J)⊥, so
I ∩ J⊥ ⊆ (I ∩ J)⊥. Therefore, I ∩ (I ∩ J)⊥ = I ∩ J⊥.

(5) Since I ∩ J ⊆ I, J, we get (I ∩ J)⊥⊥ ⊆ I⊥⊥ ∩ J⊥⊥. Conversely, since (I ∩ J) ∩
(I ∩J)⊥ = {0} and by Theorem 4.30, we obtain successively I ∩ (I ∩J)⊥ ⊆ J⊥ = J⊥⊥⊥,
I ∩ J⊥⊥ ∩ (I ∩ J)⊥ = {0}, J⊥⊥ ∩ (I ∩ J)⊥ ⊆ I⊥ = I⊥⊥⊥, I⊥⊥ ∩ J⊥⊥ ∩ (I ∩ J)⊥ = {0},
I⊥⊥ ∩ J⊥⊥ ⊆ (I ∩ J)⊥⊥. Therefore, (I ∩ J)⊥⊥ = I⊥⊥ ∩ J⊥⊥.

(6) By items (2), (3) and Theorem 2.7, we have I ∧An(L) J = I⊥⊥ ∧An(L) J
⊥⊥ =

I⊥⊥ ∩ J⊥⊥ = I ∩ J.

(7) Since I, J ⊆ I∨J, by item (6) and I⊥, J⊥ ∈ Ann(L), we get (I∨J)⊥ ⊆ I⊥∩J⊥ =
I⊥⊥⊥∩J⊥⊥⊥ = (I⊥∩J⊥)⊥⊥. Conversely, I ⊆ I⊥⊥ ⊆ (I⊥∩J⊥)⊥, similarly, we have J ⊆
J⊥⊥ ⊆ (I⊥∩J⊥)⊥, hence (I⊥∩J⊥)⊥⊥ ⊆ (I∨J)⊥. Therefore, (I∨J)⊥ = (I⊥∩J⊥)⊥⊥ =
I⊥⊥⊥ ∩ J⊥⊥⊥ = I⊥ ∩ J⊥.

(8) By item (3) and Theorem 2.7, we have I ∨An(L) J = (I ∨ J)⊥⊥, then by item (7)

we have I ∨An(L) J = (I⊥ ∩ J⊥)⊥. �

Theorem 4.32. (An(L),∧An(L),∨An(L),⊥, {0}, L) is a Boolean algebra.

P r o o f . By Proposition 4.31(6), we have I∧An(L)J = I∩J. In order to prove that An(L)
is a distributive lattice, it suffices to prove that: for all I, J,H ∈ An(L), H∩(I∨An(L)J) ⊆
(H ∩ I) ∨An(L) (H ∩ J). Now, let K = (H ∩ I) ∨An(L) (H ∩ J), then H ∩ I ⊆ K ⊆
K⊥⊥. By Proposition 4.31(8), we notice that K⊥⊥ = ((H ∩ I) ∨An(L) (H ∩ J))⊥⊥ =

((H ∩ I) ∨ (H ∩ J))⊥⊥⊥⊥ = ((H ∩ I) ∨ (H ∩ J))⊥⊥ = (H ∩ I) ∨An(L) (H ∩ J) = K, so

K = K⊥⊥.
Since H ∩I ∩K⊥ ⊆ K⊥∩K⊥⊥ = {0}, by virtue of Theorem 4.30, we have H ∩K⊥ ⊆

I⊥. Similarly, H ∩ K⊥ ⊆ J⊥. Therefore, H ∩ K⊥ ⊆ I⊥ ∩ J⊥ = I⊥⊥⊥ ∩ J⊥⊥⊥ =
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(I⊥ ∩ J⊥)⊥⊥. We conclude that H ∩K⊥ ∩ (I⊥ ∩ J⊥)⊥ = {0} and so H ∩ (I ∨An(L) J) =

H ∩ (I⊥ ∩ J⊥)⊥ ⊆ K⊥⊥ = K = (H ∩ I) ∨An(L) (H ∩ J).

Now, we prove that An(L) is complemented. We notice that L = {0}⊥ ∈ An(L) and
{0} = L⊥ ∈ An(L). By Proposition 4.28(1), we have I ∩ I⊥ = {0}, for every I ∈ An(L)
and I ∨An(L) I

⊥ = (I⊥ ∩ I⊥⊥)⊥ = L. Hence the complement of I in An(L) is I⊥.
Therefore, An(L) is a Boolean algebra. �

4.4. Regular ideals

In what follows (unless otherwise specified) we denote by L a De Morgan residuated
lattice. For simplicity we use the notation i⊥ instead of {i}⊥, for all i ∈ L.

Definition 4.33. An ideal I of L is called regular iff for all i ∈ I, i⊥⊥ ⊆ I. We denote
by Regi(L) the set of all regular ideals of L.

Remark 4.34. In Example 3.14, if I = (f ] = {0, c, f} then it is easy to check that
0⊥⊥ = {0}, c⊥⊥ = I and f⊥⊥ = I. Therefore, I is a regular ideal of L.

But not all ideals are regular. Indeed, in Example 3.13, if I = {0, n} then it is easy
to check that 0⊥⊥ = L⊥ = {0}, n⊥ = {0} and n⊥⊥ = {0}⊥ = L * I.

Definition 4.35. For an ideal I of L we denote byR(I) := {x ∈ L : ∃i ∈ I such that i⊥ ⊆
x⊥}.

Lemma 4.36. R(I) is the smallest regular ideal containing I. Moreover, if I is a proper
ideal of L, then R(I) is a proper ideal of L.

P r o o f . Clearly, I ⊆ R(I).
Assume that x ≤ y and y ∈ R(I). Since y ∈ R(I), then there is an element i ∈ I such

that i⊥ ⊆ y⊥. Since x ≤ y, we get y⊥ ⊆ x⊥, so i⊥ ⊆ y⊥ ⊆ x⊥. Therefore, x ∈ R(I).
Assume that x, y ∈ R(L). We will prove that x ⊕ y ∈ R(L). Since x, y ∈ R(L), we

get there are i, j ∈ I such that i⊥ ⊆ x⊥ and j⊥ ⊆ y⊥. Clearly, i ⊕ j ∈ I. For any
t ∈ (i⊕ j)⊥ we have t ∧ (i⊕ j) = 0, so t ∧ i = 0 and t ∧ j = 0. Since (i⊕ j)⊥ ⊆ i⊥ ⊆ x⊥
and (i ⊕ j)⊥ ⊆ j⊥ ⊆ y⊥, we conclude that t ∧ x = 0 and t ∧ y = 0. By (c24), we have
t∧ (x⊕y) ≤ (t∧x)⊕ (t∧y) = 0⊕0 = 0, that is, t ∈ (x⊕y)⊥, and so (i⊕j)⊥ ⊆ (x⊕y)⊥.
Hence, x⊕ y ∈ R(I). Therefore, R(I) is an ideal of L.

Now, we prove that R(I) is a regular ideal of L. For any x ∈ R(I), there is an
element i ∈ I such that i⊥ ⊆ x⊥. For any t ∈ x⊥⊥, by Proposition 4.28(6), we have
i⊥ ⊆ x⊥ = x⊥⊥⊥ ⊆ t⊥, so i⊥ ⊆ x⊥ ⊆ t⊥, that is, t ∈ R(I) and x⊥⊥ ⊆ R(I). Therefore,
R(I) is an regular ideal of L.

Now, we prove R(I) is the smallest regular ideal containing I. Let K be a regular
ideal such that I ⊆ K. For any x ∈ R(I), there is i ∈ I such that i⊥ ⊆ x⊥. Then by
Proposition 4.28, we have x ∈ (x] ⊆ (x]⊥⊥ = x⊥⊥ ⊆ i⊥⊥ ⊆ K. Therefore, R(I) ⊆ K.

If I is a proper ideal of L, then 1 /∈ I. Since 1⊥ = 0 and 1 /∈ I, by the definition of
R(I) we conclude that 1 /∈ R(I). �

Remark 4.37. In Example 3.14, if I = (f ] = {0, c, f} then it is easy to check that
R(I) = I.
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Proposition 4.38. Let I, J be ideals of L. Then:
(1) I⊥ is a regular ideal of L;
(2) R(R(I)) = R(I);
(3) R(I⊥) = I⊥;
(4) If I ⊆ J, then R(I) ⊆ R(J);
(5) R(I) is the intersection of all regular ideals containing I;
(6) I is a regular ideal iff R(I) = I;
(7) ∩{I : I is a regular ideal of L} = {0};
(8) R(I) = R(J) iff I ⊆ R(J) and J ⊆ R(I).

P r o o f . (1) For any a ∈ I⊥, we have I⊥⊥ ⊆ a⊥, then we get a⊥⊥ ⊆ I⊥⊥⊥ = I⊥, so
I⊥ is a regular ideal.

(2), (3), (4), (5) and (6) By Lemma 4.36 and item (1), we can easily prove them.

(7) It is clear, since {0} is a regular ideal of L.

(8) Let R(I) = R(J), so I ⊆ R(I) ⊆ R(J) and J ⊆ R(J) ⊆ R(I). Therefore,
I ⊆ R(J) and J ⊆ R(I). Conversely, since R(I) is the smallest regular ideal containing
I, by I ⊆ R(J) we get I ⊆ R(I) ⊆ R(J) and by J ⊆ R(I) we get J ⊆ R(J) ⊆ R(I).
Therefore, R(I) = R(J). �

Lemma 4.39. Let L,L′ be De Morgan residuated lattices, f : L→ L′ be a homomor-
phism, ∅ 6= X ⊆ L. Then f(X⊥) ⊆ (f(X))⊥.

P r o o f . For all x ∈ f(X⊥), there is y ∈ X⊥ such that x = f(y). For all z ∈ f(X),
there is t ∈ X such that z = f(t). We have x ∧ z = f(y) ∧ f(t) = f(y ∧ t) = f(0) = 0.
Therefore, x ∈ (f(X))⊥. �

Lemma 4.40. Let L,L′ be De Morgan residuated lattices, f : L → L′ be a surjective
homomorphism, ∅ 6= Y ⊆ L′. Then (f−1(Y ))⊥ ⊆ f−1(Y ⊥).

P r o o f . For all b ∈ Y, there is a ∈ L such that b = f(a), that is, a ∈ f−1(b) ⊆ f−1(Y ),
so x∧a = 0, for any x ∈ (f−1(Y ))⊥. Then f(x)∧ b = f(x)∧f(a) = f(a∧x) = f(0) = 0.
Therefore, f(x) ∈ Y ⊥, that is, x ∈ f−1(Y ⊥). �

Theorem 4.41. Let L,L′ be De Morgan residuated lattices, f : L→ L′ be an isomor-
phism, ∅ 6= X ⊆ L, ∅ 6= Y ⊆ L′. Then f(X⊥) = (f(X))⊥ and (f−1(Y ))⊥ = f−1(Y ⊥).

P r o o f . By Lemma 4.39, we have f(X⊥) ⊆ (f(X))⊥. Now, we prove that f(X⊥) ⊇
(f(X))⊥. For any y ∈ (f(X))⊥ ⊆ L′, since f is surjective, there is x ∈ L, such that
f(x) = y. For any a ∈ X, we have f(a) ∈ f(X), so f(x∧a) = f(x)∧f(a) = y∧f(a) = 0.
Since f is injective, we get x ∧ a = 0, so x ∈ X⊥, that is y ∈ f(X⊥). Therefore,
f(X⊥) = (f(X))⊥.

By Lemma 4.40, we have (f−1(Y ))⊥ ⊆ f−1(Y ⊥). Now, we prove that (f−1(Y ))⊥ ⊇
f−1(Y ⊥). For any x ∈ f−1(Y ⊥), we have f(x) ∈ Y ⊥. For all a ∈ f−1(Y ), we have
f(a) ∈ Y, f(x ∧ a) = f(x) ∧ f(a) = 0. Since f is injective, we get x ∧ a = 0, so
x ∈ (f−1(Y ))⊥. Therefore, (f−1(Y ))⊥ = f−1(Y ⊥). �
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Corollary 4.42. Let L,L′ be De Morgan residuated lattices, f : L → L′ be a homo-
morphism, ∅ 6= X ⊆ L, ∅ 6= Y ⊆ L′. Then:

(i) f(X⊥) = (f(X))⊥ iff (f(X⊥))⊥⊥ = f(X⊥) and (f(X))⊥ ∩ (f(X⊥))⊥ = {0};
(ii) If f is surjective, then (f−1(Y ))⊥ = f−1(Y ⊥) iff f−1(Y ⊥) ∩ (f−1(Y ))⊥⊥ = {0}.

P r o o f . (i). If f(X⊥) = (f(X))⊥, then f(X⊥)⊥⊥ = (f(X))⊥⊥⊥ = (f(X))⊥ = f(X⊥).
Also, (f(X))⊥ ∩ (f(X⊥))⊥ = (f(X))⊥ ∩ (f(X))⊥⊥ = {0}. Conversely, by Lemma 4.39,
we have f(X⊥) ⊆ (f(X))⊥. Now, we prove that f(X⊥) ⊇ (f(X))⊥. Since (f(X))⊥ ∩
(f(X⊥))⊥ = {0}, we have (f(X))⊥ ⊆ (f(X⊥))⊥⊥ = f(X⊥). Therefore, f(X⊥) =
(f(X))⊥.

(ii). If (f−1(Y ))⊥ = f−1(Y ⊥), then f−1(Y ⊥)∩(f−1(Y ))⊥⊥ = (f−1(Y ))⊥∩(f−1(Y ))⊥⊥

= {0}. Conversely, if x ∈ f−1(Y ⊥), y ∈ L are such that y ≤ x, then f(y) ≤ f(x). Since
f(x) ∈ Y ⊥, so f(y) ∈ Y ⊥, and so y ∈ f−1(Y ⊥). Consequently, f−1(Y ⊥) is a down set.
Since f−1(Y ⊥) ∩ (f−1(Y ))⊥⊥ = {0}, we have f−1(Y ⊥) ⊆ (f−1(Y ))⊥⊥⊥ = (f−1(Y ))⊥.
It follows that f−1(Y ⊥) ⊆ (f−1(Y ))⊥. By Lemma 4.40, we have (f−1(Y ))⊥ ⊆ f−1(Y ⊥).
Therefore, (f−1(Y ))⊥ = f−1(Y ⊥). �

Corollary 4.43. If f : L → L′ is an isomorphism, then R(f(I)) = f(R(I)), for any
ideal I of L.

P r o o f . Let z ∈ R(f(I)), then there is a ∈ f(I) such that a⊥ ⊆ z⊥. Since f : L→ L′ is
an isomorphism, it holds that there are a0 ∈ I ⊆ L and z0 ∈ L such that a = f(a0), z =
f(z0). By Theorem 4.41, we have f(a0

⊥) = (f(a0))⊥ = a⊥ ⊆ z⊥ = (f(z0))⊥ = f(z0
⊥).

Hence a0
⊥ ⊆ z0

⊥. We conclude that z0 ∈ R(I) and z = f(z0) ∈ f(R(I)). Therefore,
R(f(I)) ⊆ f(R(I)).

Conversely, let z ∈ f(R(I)). Since f is an isomorphism, we have z = f(z0), for some
z0 ∈ R(I). Then there is a0 ∈ I such that a0

⊥ ⊆ z0
⊥, so (f(a0))⊥ = f(a0

⊥) ⊆ f(z0
⊥) =

(f(z0))⊥ = z⊥. We conclude that (f(a0))⊥ ⊆ z⊥, with f(a0) ∈ f(I). Hence z ∈ R(f(I));
eventualy, f(R(I)) ⊆ R(f(I)). Therefore, R(f(I)) = f(R(I)). �

Proposition 4.44. (i) If I, J are ideals of L and L′, respectively, then R(I × J) =
R(I)×R(J);

(ii) Let Λ be a finite index set. If Ii are ideals of Li, for all i ∈ Λ, then R(
∏

i∈Λ Ii) =∏
i∈ΛR(Ii).

P r o o f . (i). Let x ∈ L and y ∈ L′, we define (x, y)⊥ = x⊥×y⊥. ThenR(I×J) = {(x, y) :
∃(a, b) ∈ I × J such that (a, b)⊥ ⊆ (x, y)⊥} = {(x, y) : ∃a ∈ I, b ∈ J such that a⊥ ⊆
x⊥, b⊥ ⊆ y⊥} = {(x, y) : x ∈ R(I), y ∈ R(J)} = R(I)×R(J).

(ii). It follows by (i). �

Proposition 4.45. If I and J are ideals of a totally ordered De Morgan residuated
lattice, then R(I ∩ J) = R(I) ∩R(J).
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P r o o f . We note that if I is an ideal of the totally ordered De Morgan residuated
lattice L, then R(I) = L or R(I) = {0}. If I 6= {0}, then there exists 0 6= a ∈ I.
Since L is totally ordered, we get a⊥ = {0} and so R(I) = L. If I = {0}, then R(I) =
{x ∈ L : 0⊥ ⊆ x⊥} = {x ∈ L : x⊥ = L} = {0}.

Now, we prove that if I and J are ideals of the totally ordered De Morgan residuated
lattice L, then R(I ∩ J) = R(I) ∩ R(J). If I 6= {0} and J 6= {0}, then I ∩ J 6= {0}.
There exist 0 6= a ∈ I and 0 6= b ∈ J and since L is a totally ordered we have a ≤ b
or b ≤ a. Assume that a ≤ b, then 0 6= a ∈ I ∩ J. So R(I ∩ J) = L,R(I) = L and
R(J) = L. If I = {0} or J = {0}, then I ∩ J = {0}. Then R(I) = {0} or R(J) = {0}
and R(I ∩ J) = {0}. Therefore, R(I ∩ J) = R(I) ∩R(J).

Let I and J be ideals of a finite direct product
∏n

i=1 Li, where Li are totally ordered
De Morgan residuated lattices, for all 1 ≤ i ≤ n. By Theorem 3.10, we have I =

∏n
i=1 Ii,

J =
∏n

i=1 Ji, where Ii, Ji are ideals of Li, for all 1 ≤ i ≤ n. By Proposition 4.44, it follows
successively R(I∩J) = R(

∏n
i=1 Ii∩

∏n
i=1 Ji) = R(

∏n
i=1(Ii∩Ji)) =

∏n
i=1(R(Ii)∩R(Ji)) =∏n

i=1R(Ii) ∩
∏n

i=1R(Ji) = R(
∏n

i=1 Ii) ∩R(
∏n

i=1 Ji) = R(I) ∩R(J). �

We denote by R(Ii(L)) := {R(I) : I ∈ Ii(L)}. We know that for every family (Ii)i∈Λ

of ideals of L we have: ∧i∈ΛIi = ∩i∈ΛIi and ∨i∈ΛIi = (∪i∈ΛIi], with Λ an index set (see
Proposition 3.8).

Proposition 4.46. (R(Ii(L)),u,t, R(0), R(L)) is a complete Brouwerian lattice, where
R(I)uR(J) = R(I ∩J), R(I)tR(J) = R(I ∨J), and L is a totally ordered De Morgan
residuated lattice.

P r o o f . By Proposition 4.45, we have R(I ∩ J) = R(I) ∩ R(J). Hence R(I) u R(J) =
R(I)∩R(J). Since I, J ⊆ I ∨ J, by Proposition 4.38(4), we have R(I), R(J) ⊆ R(I ∨ J).
This means that R(I ∨ J) is an upper bound of R(I) and R(J). Now let R(I), R(J) ⊆
R(K), for some K ∈ Ii(L). Then I, J ⊆ R(K), hence I ∨ J ⊆ R(K) and so R(I ∨ J) ⊆
R(R(K)) = R(K), by Proposition 4.38(2). Consequently, R(I ∨ J) is the least upper
bound of R(I) and R(J).

For simplicity we denote by ∨(Gi) := ∨i∈ΛGi (the join of all ideals of the family of
ideals (Gi)i∈Λ), and by t(R(Gi)) := ti∈Λ(R(Gi)). Now, we prove that for any family
of ideals (Gi)i∈Λ, we have that t(R(Gi)) = R(∨(Gi)). Since R(Gi) ⊆ R(∨(Gi)), we
get R(∨(Gi)) is an upper bound of R(Gi), for all i ∈ Λ. Also if R(Gi) ⊆ R(K), for all
i ∈ Λ, then Gi ⊆ R(K), for some K ∈ Ii(L). Then ∨(Gi) ⊆ R(K), hence R(∨(Gi)) ⊆
R(R(K)) = R(K), by Proposition 4.38(2). Consequently, R(∨Gi) is the least upper
bound of R(Gi), for all i ∈ Λ. So (R(Ii(L)),u,t, R(0), R(L)) is a complete lattice. By
Proposition 4.11(ii), we get ∨(I ∧Gi) = I ∧ (∨Gi) = I ∩ (∨Gi). It follows successively
t(R(I) u R(Gi)) = t(R(I ∩ Gi) = R(∨(I ∩ Gi)) = R(∨(I ∧ Gi)) = R(I ∩ (∨Gi)) =
R(I)uR(∨Gi) = R(I)u(t(R(Gi))). Therefore, (R(Ii(L)),u,t, R(0), R(L)) is a complete
Brouwerian lattice. �

Proposition 4.47. The lattice (R(Ii(L)),u,t, R(0), R(L)) is pseudo-complemented,
where L is a totally ordered De Morgan residuated lattice.

P r o o f . Let I,K ∈ Ii(L). By Propositions 4.28(8) and 4.38(3), {0} = L⊥ and R({0}) =
R(L⊥) = L⊥ = {0}. So R(I) u R(I⊥) = R(I ∩ I⊥) = R({0}) = {0}. Clearly, I ⊆ R(I).
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Since {0} = R(I) ∩ (R(I))⊥ ⊇ I ∩ (R(I))⊥, by Theorem 4.30, it follows that (R(I))⊥ ⊆
I⊥. Now let R(I) uR(K) = R({0}) = {0}, that is, R(I) ∩R(K) = {0}, we get R(K) ⊆
(R(I))⊥ ⊆ I⊥ = R(I⊥) by Theorem 4.30 and Proposition 4.38(3). So, for every ideal
R(I), its pseudo-complement isR(I⊥). Therefore, the lattice (R(Ii(L)),u,t, R(0), R(L))
is pseudo-complemented. �

Proposition 4.48. The lattice (R(Ii(L)),u,t, R(0), R(L)) is an algebraic lattice, where
L is a totally ordered De Morgan residuated lattice.

P r o o f . Let z ∈ L and Λ be an index set. Firstly, we prove that R((z]) is a compact
element in the lattice R(Ii(L)). Assume that R((z]) ⊆ tR(Gi), where (Gi)i∈Λ is a family
of ideals. Then z ∈ R((z]) ⊆ tR(Gi) (by the proof of Proposition 4.46, tR(Gi) =
R(∨i∈ΛGi)), so there is a ∈ ∨i∈ΛGi such that a⊥ ⊆ z⊥, this means that there exist xi ∈
Gi (1 ≤ i ≤ n for some n) such that a ≤ x1⊕x2⊕· · ·⊕xn (because ∨i∈ΛGi = (∪i∈ΛGi] =
{x ∈ L : x ≤ x1 ⊕ x2 ⊕ · · · ⊕ xn, for some n ≥ 1, xi ∈ Gi, 1 ≤ i ≤ n, i ∈ Λ}). Consider
X = {G1, G2, . . . , Gn} ⊆ ∪i∈ΛGi, so (x1⊕x2⊕· · ·⊕xn)⊥ ⊆ a⊥ ⊆ z⊥, so z ∈ R(∨Gi∈XGi),
so we get (z] ∈ R(∨Gi∈XGi), and R((z]) ∈ R(R(∨Gi∈XGi)) = R(∨Gi∈XGi) = R(G1) t
R(G2) t · · · t R(Gn), by Proposition 4.38(2). Therefore, R((z]) is a compact element
in the lattice R(Ii(L)). Now consider R(I) ∈ R(Ii(L)). Since I = ∨a∈I(a], we get
R(I) = R(∨a∈I(a]) = t{R((a]) : a ∈ I}. Therefore, (R(Ii(L)),u,t, R(0), R(L)) is an
algebraic lattice. �

4.5. Relative annihilators

Definition 4.49. Let X and I be subsets of L. The annihilator of X relative to I is
the set (X, I)⊥ = {a ∈ L : (∀x ∈ X)x ∧ a ∈ I}.

In Example 3.14, if X = {0, c, f}, I = {0, a}, then it is easy to show that (X, I)⊥ =
{0, a, b}. Clearly, I ⊆ (X, I)⊥.

Lemma 4.50. If I is an ideal and ∅ 6= X a subset of L, then (X, I)⊥ is an ideal of L.
Moreover, if I is a proper ideal of L, then (X, I)⊥ is a proper ideal of L, too.

P r o o f . Clearly, 0 ∈ (X, I)⊥, so (X, I)⊥ is nonempty.
Now, we prove that (X, I)⊥ is a down set. Let a ∈ (X, I)⊥ and b ∈ L, such that

b ≤ a. Let x ∈ X. Since b ∧ x ≤ a ∧ x and a ∧ x ∈ I, as I is an ideal of L, we have
b ∧ x ∈ I, that is, b ∈ (X, I)⊥.

Now, we show that if a, b ∈ (X, I)⊥, then a ⊕ b ∈ (X, I)⊥. Let a, b ∈ (X, I)⊥, then
a∧x ∈ I and b∧x ∈ I, for all x ∈ X. By (c24), we have x∧ (a⊕b) ≤ (x∧a)⊕ (x∧b) ∈ I,
that is, a⊕ b ∈ (X, I)⊥. Therefore, (X, I)⊥ is an ideal of L. Moreover, it is clear that if
I is a proper ideal of L, then (X, I)⊥ is a proper ideal of L, too. �

In the following proposition, we consider (X, I)⊥ for some special cases of X and I.

Proposition 4.51. Let I, J,H be ideals of L and ∅ 6= X,Y ⊆ L. Then
(1) If I ⊆ J, then (X, I)⊥ ⊆ (X, J)⊥;
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(2) If X ⊆ Y, then (Y, I)⊥ ⊆ (X, I)⊥;
(3) ((∪i∈ΛXi), I)⊥ = ((∩i∈ΛXi), I)⊥;
(4) (X, I)⊥ = ∩x∈X((X, I)⊥);
(5) (X,∩i∈Λ(Ii))

⊥ = ∩i∈Λ(X, Ii)
⊥;

(6) ((X], I)⊥ = (X, I)⊥;
(7) I ⊆ (X, I)⊥;
(8) (X, I)⊥ = L iff X ⊆ I;
(9) (J, I)⊥ ∩ J ⊆ I;
(10) J ∩H ⊆ I iff H ⊆ (J, I)⊥.

P r o o f . (1) Let I ⊆ J, and a ∈ (X, I)⊥. Then a ∧ x ∈ I, for all x ∈ X. Since I ⊆ J,
we get a ∧ x ∈ J, for all x ∈ X, that is, a ∈ (X, J)⊥. Therefore, (X, I)⊥ ⊆ (X, J)⊥.

(2) Let X ⊆ Y, and a ∈ (Y, I)⊥. Then a ∧ x ∈ I, for all x ∈ Y. Since X ⊆ Y, we get
a ∧ x ∈ I, for all x ∈ X, that is, a ∈ (X, I)⊥. Therefore, (Y, I)⊥ ⊆ (X, I)⊥.

(3) By item (2) we have ((∪i∈ΛXi), I)⊥ ⊆ (Xi, I)⊥, for all i ∈ Λ. So ((∪i∈ΛXi), I)⊥ ⊆
((∩i∈ΛXi), I)⊥, for all i ∈ Λ. Conversely, let a ∈ ((∩i∈ΛXi), I)⊥, then a ∈ ((Xi, I)⊥,
for all i ∈ Λ. Hence a ∧ xi ∈ I, for all xi ⊆ Xi and i ∈ Λ, that is, a ∈ ((∪i∈ΛXi), I)⊥.
Therefore, ((∪i∈ΛXi), I)⊥ = ((∩i∈ΛXi), I)⊥.

(4) It follows easily from item (3).

(5) We have successively a ∈ (X,∩i∈Λ(Ii))
⊥ iff a ∧ x ∈ ∩i∈Λ(Ii), for all x ∈ X iff

a ∧ x ∈ Ii, for all x ∈ X and i ∈ Λ iff a ∈ (X, Ii)
⊥, for all i ∈ Λ iff a ∈ ∩i∈Λ(X, Ii)

⊥.

(6) Since X ⊆ (X], by item (2) we have ((X], I)⊥ ⊆ (X, I)⊥. Conversely, let a ∈
(X, I)⊥ and z ∈ (X]. Then a ∧ x ∈ I, for all x ∈ X. Since z ∈ (X], it holds that
z ≤ x1 ⊕ x2 ⊕ · · · ⊕ xn, for some x1, x2, . . . , xn ∈ X. Clearly, a ∧ xi ∈ I, for all xi ∈ X.
By (c24), we get a∧ z ≤ a∧ (x1⊕x2⊕· · ·⊕xn) ≤ (a∧x1)⊕ (a∧x2)⊕· · ·⊕ (a∧xn) ∈ I.
Then a ∧ z ∈ I, as I is an ideal of L, so a ∈ ((X], I)⊥. Therefore, ((X], I)⊥ = (X, I)⊥.

(7) Let a ∈ I, then a ∧ x ≤ a ∈ I, for all x ∈ X, hence a ∈ (X, I)⊥. Therefore,
I ∈ (X, I)⊥.

(8) If (X, I)⊥ = L, then 1 ∈ (X, I)⊥. Then x = x ∧ 1 ∈ I, for all x ∈ X. Therefore,
X ⊆ I. Conversely, if X ⊆ I, then for any a ∈ L and for all x ∈ X we have a ∧ x ≤ x ∈
X ⊆ I, so a ∈ (X, I)⊥; consequently L ⊆ (X, I)⊥. Therefore, (X, I)⊥ = L.

(9) Let x ∈ (J, I)⊥ ∩ J. Then x ∈ (J, I)⊥ and x ∈ J. Since x = x ∧ x ∈ I, we get
(J, I)⊥ ∩ J ⊆ I.

(10) If J ∩H ⊆ I and x ∈ H, then for any y ∈ J we have x∧ y ∈ J ∩H, so x∧ y ∈ I.
Therefore, x ∈ (J, I)⊥, and eventually, H ⊆ (J, I)⊥. Conversely, let H ⊆ (J, I)⊥. By
item (9) we have J ∩H ⊆ J ∩ (J, I)⊥ ⊆ I. �

Theorem 4.52. (J, I)⊥ is the relative pseudo-complement of J with respect to I in the
lattice (Ii(L),⊆).

P r o o f . We know that (J, I)⊥ is an ideal. By Proposition 4.51 (10), we have J ∩H ⊆
I iff H ⊆ (J, I)⊥, for every ideal H of L. Therefore, (J, I)⊥ is the relative pseudo-
complement of J with respect to I in the lattice (Ii(L),⊆). �



474 L.-C. HOLDON

5. CONCLUSIONS

In the paper, we study the notion of ideal in De Morgan residuated lattices, and propose
new characterisations for prime, �-prime, maximal ideals. We introduce the notion of
annihilator in De Morgan residuated lattices and investigate some properties of them.
We get that the ideal lattice (Ii(L)),⊆) is pseudo-complemented, and for any ideal I, its
pseudo-complement is the annihilator ideal I⊥. Also, if we define An(L) to be the set of
all annihilators of L, then we have that An(L) is a Boolean algebra. Moreover, we give
the necessary and sufficient condition under which both the image and the preimage of
an annihilator under a homomorphism are annihilators. In addition, we study regular
ideals and relative annihilators in De Morgan residuated lattices.

In our future work, we will continue our study of algebraic properties of ideals and
annihilators in residuated lattices. We will use these ideals to define congruence relations
on L and to study the properties of the quotient residuated lattice of L. It seems that
the residuated lattices can be studied from ideal theory view in a very nice way.
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