Kybernetika 54 no. 2, 351-362, 2018

Estimation for heavy tailed moving average process

Hakim Ouadjed and Tawfiq Fawzi MamiDOI: 10.14736/kyb-2018-2-0351

Abstract:

In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi parametric estimator designed for MA(1) driven by positive-value stable variables innovations. We study its asymptotic normality and finite sample performance. We compare the behavior of this estimator in which we use the Hill estimator for the extreme index and the estimator in which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1) driven by stable variables innovations using the relationship between the extremal index and the moving average parameter. We analyze their performance through a simulation study.

Keywords:

extreme value theory, mixing processes, tail index estimation

Classification:

60G70, 62G32

References:

  1. P. J. Brockwell and R. A. Davis: Time Series: Theory and methods. Springer-Verlag, New York 1991.   DOI:10.1007/978-1-4419-0320-4
  2. S. Cheng and L. Peng: Confidence intervals for the tail index. Bernoulli 7 (2001), 751-760.   DOI:10.2307/3318540
  3. H. Drees: Weighted approximations of tail processes for $\beta$-mixing random variables. Ann. Appl. Probab. 10 (2000), 1274-1301.   DOI:10.1214/aoap/1019487617
  4. H. Drees: Extreme quantile estimation for dependent data, with applications to finance. Bernoulli 9 (2003), 617-657.   DOI:10.3150/bj/1066223272
  5. Z. Fabián and M. Stehlík: On Robust and Distribution Sensitive Hill Like Method. Tech. Rep. IFAS Reasearch Paper Series 43 (2009).   CrossRef
  6. P. D. Feigin, M. F. Kratz and S. I. Resnick: Parameter estimation for moving averages with positive innovations. Ann. Appl. Probab. 6 (1996), 1157-1190.   DOI:10.1214/aoap/1035463327
  7. C. A. T. Ferro and J. Segers: Inference for clusters of extreme values. J. Roy. Statist. Soc., Ser. B 65 (2003), 545-556.   CrossRef
  8. R. A. Fisher and L. H. C. Tippett: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Cambridge Philosophical Soc. 24 (1928), 180-190.   CrossRef
  9. L. de Haan, C. Mercadier and C. Zhou: Adapting extreme value statistics to financial time series: dealing with bias and serial dependence. Finance Stoch. 20 (2016), 321-354.   DOI:10.1007/s00780-015-0287-6
  10. P. Hall and A. H. Welsh: Adaptive estimates of parameters of regular variation. Ann. Statist. 13 (1985), 331-341.   DOI:10.1214/aos/1176346596
  11. B. M. Hill: A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 (1975), 1163-1174.   DOI:10.1214/aos/1176343247
  12. P. Jordanova, M. Stehlík, Z. Fabián and L. Střelec: On estimation and testing for Pareto tails. Pliska Stud. Math. Bulgar. 22 (2013), 89-108.   CrossRef
  13. P. Jordanova, J. Dušek and M. Stehlík: Modeling methane emission by the infinite moving average process. Chemometrics and Intelligent Laboratory Systems 122 (2013), 40-49.   DOI:10.1016/j.chemolab.2012.12.006
  14. P. Jordanova, Z. Fabián, P. Hermann, L. Střelec, A. Rivera, S. Girard, S. Torres and M. Stehlík: Weak properties and robustness of t-Hill estimators. Extremes 19 (2016), 591-626.   DOI:10.1007/s10687-016-0256-2
  15. I. A. Koutrouvelis: Regression-type estimation of the parameters of stable law. J. Amer. Statist. Assoc. 75 (1980), 918-928.   DOI:10.1080/01621459.1980.10477573
  16. M. R. Leadbetter, G. Lindgren and H. Rootzen: Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York 1983.   DOI:10.1007/978-1-4612-5449-2
  17. T. F. Mami and H. Ouadjed: Semi parametric estimation for autoregressive process with infinite variance. ProbStat Forum 9 (2016), 73-79.   CrossRef
  18. J. H. McCulloch: Simple consistent estimators of stable distribution parameters. Commun. Statist. - Simulation and Computation 15 (1986), 1109-1136.   DOI:10.1080/03610918608812563
  19. M. M. Meerschaert and H. P Scheffler: A simple robust estimation method for the thickness of heavy tails. J. Statist. Planning Inference 71 (1998), 19-34.   DOI:10.1016/s0378-3758(98)00093-7
  20. C. Neves and M. I. Fraga Alves: Reiss and Thomas automatic selection of the number of extremes. Comput. Statist. Data Anal. 47 (2004), 689-704.   DOI:10.1016/j.csda.2003.11.011
  21. J. P. Nolan: Maximum likelihood estimation and diagnostics for stable distributions. In: Lévy Processes (O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Brikhäuser, Boston 2001.   DOI:10.1007/978-1-4612-0197-7_17
  22. G. Samorodnitsky and M. Taqqu: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York 1994.   CrossRef
  23. R. L. Smith and I. Weissman: Estimating the extremal index. J. Roy. Statist. Soc., Ser. B 56 (1994), 515-528.   CrossRef
  24. M. Süveges: Likelihood estimation of the extremal index. Extremes 10 (2007), 41-55.   DOI:10.1007/s10687-007-0034-2
  25. I. Weissman and S. Y. Novak: On blocks and runs estimators of the extremal index. J. Statist. Planning Inference 66 (1998), 281-288.   DOI:10.1016/s0378-3758(97)00095-5