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ESTIMATION FOR HEAVY TAILED MOVING AVERAGE
PROCESS

Hakim Ouadjed and Tawfiq Fawzi Mami

In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi
parametric estimator designed for MA(1) driven by positive-value stable variables innovations.
We study its asymptotic normality and finite sample performance. We compare the behavior
of this estimator in which we use the Hill estimator for the extreme index and the estimator in
which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1)
driven by stable variables innovations using the relationship between the extremal index and
the moving average parameter. We analyze their performance through a simulation study.
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1. INTRODUCTION

The modelling of extremes may be done in two different ways: modelling the maximum
of a collection of random variables, and modelling the largest values over some high
threshold.

The Fisher–Tippett theorem is one of two fundamental theorems in the EVT (Ex-
treme Value theory). It plays the same role as the Central Limit Theorem plays in the
studies of sums of random variables.

Theorem 1.1. (Fisher and Tippett [8]) Let (Xn) be a sequence of i.i.d. random
variables with distribution F . Let Mn = max (X1, . . . , Xn). If there exist norming
constants cn > 0 and dn ∈ R and some non-degenerate distribution function G such
that

Mn − dn
cn

D−→ G, (1)

then G is one of the following three types :

(i) Gumbel

Λ(x) = exp(−e−x), x ∈ R,
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(ii) Fréchet

Φα(x) =

{
0, x ≤ 0
exp(−x−α), x > 0, α > 0,

(iii) Weibull

Ψα(x) =

{
exp(−(−x)α) x ≤ 0, α > 0
1, x > 0.

We say that F belongs to the max-domain of attraction of the distribution of extreme
values G, and we note F ∈MDA(G).

Suppose we have observations X1, . . . , Xn from the MA(1) model, i. e.,

Xt = λ Zt−1 + Zt, (2)

where {Zt} is a sequence of independent and identically distributed random variables
with mean zero and finite variance. In case −1 < λ < 1, the maximum likelihood
estimator λ̂MLE for λ has the following asymptotic limit:

√
n(λ̂MLE − λ)

D−→ N (0, 1− λ2),

(see Brockwell and Davis [1]) where
D−→ stands for convergence in distribution. Feigin et

al. [6] study the nonnegative MA(1) process assuming either the right or the left tail of
the innovations distribution is regularly varying. The estimator of the moving average
parameter is proposed and its asymptotic non-normal distribution is established. The
rest of this paper is organized as follows. In Section 2, we present the positive MA(1)
stable process. In Section 3 the new semi parametric estimator of the moving average
parameter for a positive MA(1) stable process is introduced and its properties examined.
In Section 4, we study the performance of our estimator by some simulations. Section
5 is devoted to the proofs. In Section 6, we introduce the extremal index which is
the key parameter for extending extreme value theory results from i.i.d. to stationary
sequences and we propose a new estimator for the moving average parameter based on
the relationship between this parameter and the extremal index.

2. POSITIVE MA(1) STABLE PROCESS

The α-stable family of distributions X ∼ S(α, β, σ, µ) includes the Gaussian one as a
spacial case. However, this class of distributions allows in addition for asymmetry and
heavy tails and we have FX ∈MDA(Φα). In general, closed form density function of X
are not known. The exceptions are for α = 2 corresponding to normal distribution, α = 1
and β = 0 yielding Cauchy distribution and α = 0.5, β = ±1 for the Lévy distribution.
The α-stable random variable is defined in terms of its characteristic function ϕX(t) (see
Samorodnitsky and Taqqu [22]) given by

ϕX(t) = exp

{
iµt− σα|t|α

(
1 + iβ

t

|t|
w(t, α)

)}
(3)
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with

w(t, α) =


tan(

απ

2
) if α 6= 1

2

π
ln |t| if α = 1,

where the characteristic exponent (index of stability, tail exponent) α ∈]0, 2], a skewness
parameter β ∈ [−1, 1], a scale parameter σ > 0, a location parameter µ ∈ R.

The family of stable laws S(α, 1, 1, µ) with 0 < α < 1, µ ≥ 0 define positive ran-
dom variables with support (µ,∞[, such distributions have become a standard tool in
modelling heavy tailed data in such diverse areas as finance, engineering and survival
analysis. Quite often, one encounters insurance claims or lifetime data which display
heavy tail behaviors which make positive stable laws good candidates for fitting this
type of data.

In many applications, the desire to model the phenomena under study by non-negative
dependent processes has increased. An excellent presentation of the classical theory
concerning these models can be found, for example, in Brockwell and Davis [1]. Recently,
advancements in such models have shifted focus to some specialized features of the model,
e. g. heavy tail innovations of the model. Let the MA(1) process

Xt = λ Zt−1 + Zt, (4)

where 0 < λ < 1 and
∑∞
j=0 λ

jω <∞ for 0 < ω < α and Zt ∼ i.i.d. which, for simplicity,
we take to be positive stable S(α, 1, 1, µ), 0 < α < 1, µ ≥ 0. From Samorodnitsky and
Taqqu [22] these random variables have the following approximate of the tail distribution
for x→∞

1− FZ(x) ∼ 2

π
Γ(α) sin

(απ
2

)
x−α, (5)

and Xt ∼ S(α, 1, (λα + 1)1/α, µ(1 + λ)).

3. DEFINING THE ESTIMATOR AND MAIN RESULTS

We consider the MA(1) process in (4), we have

lim
x→∞

P (Xt > x)

P (Zt > x)
= 1 + λα,

thus we have the following approximation

1− FX(x) ∼ 2

π
Γ(α) sin

(απ
2

)
(1 + λα)x−α.

Hence we can estimate 2
πΓ(α) sin

(
απ
2

)
(1 + λα) by k

nX
α̂X
n−k,n, where

k = k(n)→∞, k/n→ 0

and

α̂X =

(
1

k

k∑
i=1

logXn−i+1,n − logXn−k,n

)−1
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is the Hill estimator [11], with Xi,n denoting the ith ascending order statistics 1 ≤ i ≤ n,
associated to the random sample (X1, X2, . . . , Xn). It follows that

λ̂n =

 πkX α̂X
n−k,n

2nΓ(α̂X) sin

(
πα̂X

2

) − 1


1/α̂X

. (6)

We note that from Theorem 2.2 of Drees [4], we have

√
k(α̂X − α)

D−→ N
(
0, σ2

)
, (7)

where

σ2 = α2

∫
(0,1]

∫
(0,1]

(st)−(1+1/α)c(s, t)ν(ds)ν(dt),

ν being signed measure defined by ν(dt) = tα
−1

dt− δ1(dt), δ1 is the Dirac measure with
mass 1 at 1 and where

c(x, y) = min(x, y) +

∞∑
m=1

[cm(x, y) + cm(y, x)],

and

cm(x, y) = lim
x→∞

n

k
P

[
X1 > F−1

X

(
1− k

n
x

)
, X1+m > F−1

X

(
1− k

n
y

)]
for all m ∈ N, x > 0, y ≤ 1 + ε, ε > 0 and F−1 denoting the inverse function of F .

We note from Dress [3] that:

σ2 = α2c(1, 1). (8)

In the case of MA(1) given by equation (4), de Haan et al. [9] showed that:

c(x, y) = min(x, y) + (1 + λα)−1(min(x, yλα) + min(y, xλα)).

Then we have
√
k(α̂X − α)

D−→ N
(

0, α2 (1 + 3λα)

(1 + λα)

)
. (9)

The asymptotic normality of λ̂n is established in the following Theorem.

Theorem 3.1. Suppose the MA(1) process in (4) and k = kn be such that k → ∞,
k/n→ 0, then

√
k

log (n/k)
(λ̂n − λ)

D−→ N

0,
α2(1 + 3λα)λ2−2α

(1 + λα)

(
2

π
Γ(α) sin

(απ
2

))2

 .
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We can estimate the extreme index α by the t-Hill estimator given by:

α̂t−HX =


1

k

k∑
j=1

Xn−k,n

Xn−j+1,n

−1

− 1


−1

, (10)

introduced in Fabián and Stehĺık [5], its consistency for dependent data was proven in
Jordanova et al. [13]. Other consistent estimator of α for the moving average process
(4) is the t-lgHill estimator introduced in Jordanova et al. [14]. It is given by:

α̂t−lgHX =
M (2) − (M (1))2

M (1)
(11)

where

M (j) =
1

k

k∑
i=1

(
log

Xn−i+1,n

Xn−k,n

)j
, j = 1, 2, . . .

4. SIMULATION STUDY

Several approaches to the automated determination of an optimal sample fraction k for
the Hill estimator have been studied (see e. g. Cheng and Peng [2], Neves and Fraga
Alves [20]). An optimal bias/variance trade-off can be derived using the asymptotic
mean squared error as the optimality criterion (see Hall and Welsh [10]), then we have:

kopt = arg min
k
E(α̂− α)2. (12)

To illustrate the performance of our estimator λ̂n, we generate 100 replications of the
time series (X1, . . . , Xn) of sizes 1000 and 2000, where Xt is an MA(1) process satisfying

Xt = λ Zt−1 + Zt, 1 < t < n, (13)

with 0 < λ < 1, and Zt ∼ S(α, 1, 1, 4), 0 < α < 1. Note that we use (12) to compute
the values of the optimal fraction integer kopt, the results are presented in Table 1 and
Table 2, where lb and ub stand respectively for lower bound and upper bound of the
confidence interval.

α 0.4 0.5
n 1000 2000 1000 2000

λ̂n 0.2158079 0.1949246 0.2496814 0.2311295
Bias 0.01580789 -0.005075427 0.0496814 0.03112951

RMSE 0.2789972 0.1793804 0.1825971 0.1562942
lb 0.1443343 0.1330465 0.08402811 0.09865995
ub 0.2872814 0.2568027 0.4153347 0.3635991

length 0.1429471 0.1237562 0.3313066 0.2649391

Tab. 1. Performance and 95% confidence intervals for λ = 0.2.
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α 0.4 0.5
n 1000 2000 1000 2000

λ̂n 0.2911583 0.2930538 0.3609823 0.3101301
Bias -0.008841675 -0.006946166 0.06098232 0.01013009

RMSE 0.1765576 0.1505765 0.252894 0.1779221
lb 0.2187662 0.2390450 0.1409462 0.1037048
ub 0.3635504 0.3470627 0.5810184 0.5165554

length 0.1447842 0.1080177 0.4400722 0.4128506

Tab. 2. Performance and 95% confidence intervals for λ = 0.3.

For an illustration of the behavior of λ̂n we made 100 samples of n = 4000 observations
from the MA(1) in (13) for α = 0.4, λ = 0, 2. Then we plotted in Figure 1 the λ̂n and

the λ̂t−Hn plots of the averages of the corresponding estimators together of λ for different
k. We remark that:

1. Both estimators are biased because they are based on estimates of the tail index Hill
and t-Hill which have optimality properties only when the underlying distribution
is close to Pareto (see Jordanova et al. [12]). If the distribution is far from Pareto
in particular the stable distribution, there may be outrageous errors and may
perform very poorly.

2. Both estimators have similar behavior for fixed number of upper order statistics
and show deviations from the true parameter λ = 0.2 as k is increased. Hence our
estimator λ̂n for the moving average parameter is not robust using the two estima-
tors Hill and t-Hill of extreme index. This result was expected because Jordanova
et al. [12] have shown that the t-Hill and the Hill of extreme index applied to the
moving average model are not robust with respect to large observations.

The same quality of the estimator is already noticed recently on the estimator of the
autoregressive parameter (see Mami and Ouadjed [17]).

Now, we generate 100 replicates of sizes 10000 from the MA(1) in (13), we compare the
bias and the root mean squared error (RMSE) of the three estimators of λ (our estimator

λ̂n, λ̂t−Hn and λ̂t−lgHn in which we use the t-lgHill estimator in (11) for estimating the

tail index α). The results are presented in Table 3. We remark that our estimator λ̂n
has the smallest bias and the λ̂t−Hn estimator has the smallest RMSE.

α 0.4
λ 0.2 0.3

Bias RMSE Bias RMSE

λ̂n -0.0247184 0.1862913 -0.04036325 0.1053356

λ̂t−Hn -0.03595814 0.1073969 -0.05892177 0.08149884

λ̂t−lgHn 0.06373993 0.5579961 0.06922238 0.5446956

Tab. 3. Comparison of the estimators of moving average parameter.
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Fig. 1. Plot of the moving average estimators λ̂n and λ̂t−H
n for

different k of the number of upper order statistics. The horizontal line

is the true value λ = 0.2.

P r o o f . Let defining the tail quantile function of FX as U(t) = F−1
X (1−1/t), for t > 1.

Then for x→∞ we have

U(x) ∼
(

2

π
Γ(α) sin

(απ
2

)
(1 + λα)

)1/α

x1/α. (14)

Note that

k
nX

α̂X
n−k,n −

2
πΓ(α) sin

(
απ
2

)
(1 + λα) =

(
k
nX

α̂X
n−k,n −

k
nX

α
n−k,n

)
+ k

nU
α(n/k)

(
Xαn−k,n
Uα(n/k) − 1

)
+ k

nU
α(n/k)− 2

πΓ(α) sin
(
απ
2

)
(1 + λα).

Using Mean-Value Theorem we find

k

n
X α̂X
n−k,n −

k

n
Xα
n−k,n =

(
k

n
Xα
n−k,n(α̂X − α) logXn−k,n

)
(1 + oP (1)). (15)

From Theorem 2.1 of Drees [4] we have

Xα
n−k,n

Uα(n/k)
= 1 +OP (1/

√
k). (16)
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From (14) we observe that for n→∞

k

n
Uα(n/k) ∼ 2

π
Γ(α) sin

(απ
2

)
(1 + λα). (17)

Combining (15), (16), (17) and using (9) we obtain

√
k

log (n/k)

(
k

n
X α̂X
n−k,n −

2

π
Γ(α) sin

(απ
2

)
(1 + λα)

)
D−→ N

(
0, α4 (1 + 3λα)

(1 + λα)

)
.

Using the map f(x) =

(
x

2
πΓ(α) sin(απ2 )

− 1

)1/α

, since

f

(
2

π
Γ(α) sin

(απ
2

)
(1 + λα)

)
= λ

and

f

(
k

n
X α̂X
n−k,n

)
=

 πkX α̂X
n−k,n

2nΓ(α̂X) sin

(
πα̂X

2

) − 1


1/α̂X

= λ̂n

and applying the delta method, it follows that the estimator λ̂n defined in (6) satisfies
the following result

√
k

log (n/k)
(λ̂n − λ)

D−→ N

(
0, α4 (1 + 3λα)

(1 + λα)

[
f ′
(

2

π
Γ(α) sin

(απ
2

)
(1 + λα)

)]2
)
.

This completes the proof of Theorem 3.1. �

Let now, the MA(1) process

Xt = λ Zt−1 + Zt, (18)

where 0 < λ < 1 and
∑∞
j=0 λ

jω <∞ for 0 < ω < α and

Zt ∼ i.i.d. S(α, β, σ, µ), 0 < α < 2.

In order to analyze the extremes in the process (18) we use the extremal index which
is the key parameter extending extreme value theory from i.i.d. random processes to
stationary time series and influences the frequency with which extreme events arrive as
well as the clustering characteristics of an extreme event.

5. THE EXTREMAL INDEX

The main assumption in EVT is that the extreme observations are independent and
identically distributed. This is not always fulfilled when working with real data.
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Primary result incorporating dependence in the extremes is summarized in Leadbetter
et al. [16]. For a strictly stationary time series (Xi) under some regularity conditions
for the tail of F and for some suitable constants cn > 0 and dn ∈ R, as the sample size
n→∞

Mn − dn
cn

D−→ (G)θ, (19)

where θ ∈]0, 1[ is the extremal index and G is the GEV distribution defined in (1). The
quantity 1/θ has a convenient heuristic interpretation, as it may be thought of as the
mean cluster size of extreme values in a large sample.

The problem of estimating θ has received some attention in the literature (see Smith
and Weissman [23], Weissman and Novak [25], Ferro and Segers [7]), Süveges [24] presents
the maximum likelihood estimator as

θ̂ML =

N∑
i=1

qSi +N − 1 +Nc −

(N−1∑
i=1

qSiN − 1 +Nc

)2

− 8Nc

N−1∑
i=1

qSi

1/2

2

N−1∑
i=1

qSi

(20)

where Si = Ti − 1, Ti are the inter-exceedance times, N is the number of exceedances
of a high threshold u and q is the estimate of F̄ (u), and NC =

∑N−1
i=1 1{Si 6=0}.

Leadbetter et al. [16] showed that the extremal index of the MA(1) process in (18) is

θ =
1

1 + λα
. (21)

From (21) we have the following estimator of the moving average parameter

λ̂n =

(
1

θ̂n
− 1

)1/α̂n

. (22)

Meerschaert and Scheffler [19] have proposed an alternative robust estimator for the
tail index α based on the asymptotic of the sum. The method works for dependent
data as the MA(1) process in (18) and performs about as well as Hill’s estimator. The
estimator is defined as follows

α̂MS =


ln+

n∑
i=1

(Xi − X̄n)2

2 lnn


−1

(23)

where X̄n = n−1(X1 + . . .+Xn) is the sample mean and ln+(x) = max(lnx, 0).
Their estimator performs best in exactly those situations in which Hill’s estimator is

most likely to fail.
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There exist other methods for estimating the stability index α. We can cite the empiri-
cal quantiles (see McCulloch [18]), the empirical characteristic function (see Koutrouvelis
[15]) and the maximum likelihood (see Nolan [21]).

We are going to analyze the performance of the estimator in (22), through a simulation
study based on the following different steps of the estimation procedure:

1. Estimate the extremal index θ using θ̂ML for a high threshold u.

2. Estimate the tail index α using α̂MS and the estimator of Koutrouvelis [15] denoted
α̂KO.

3. Finally we estimate λ by

λ̂MS =

(
1

θ̂ML

− 1

)1/α̂MS

(24)

and

λ̂KO =

(
1

θ̂ML

− 1

)1/α̂KO

. (25)

We consider samples of size n = 7000 of the model MA(1) in (18) for λ = 0.2, Zt ∼
S(0.4, 0.2, 1, 4) and Zt ∼ S(1.2, 0.2, 1, 4), we use the threshold u = q0.99 (the empirical

quantile 0.99) for estimate θ̂ML and compare the two estimators λ̂MS and λ̂KO using
the bias (Bias) and the root mean square error (RMSE). We generate 100 replicates of
the estimation procedures. The results are presented in the Table 4. We remark that
λ̂MS has the smallest bias and RMSE.

λ 0.2
α 0.4 1.2

Bias RMSE Bias RMSE

λ̂MS 0.005247667 0.08101369 0.001878179 0.058983

λ̂KO 0.01595753 0.08549662 0.01972255 0.05910452

Tab. 4. Performance of λ̂MS and λ̂KO.

6. CONCLUSION

In this work we propose two estimators for the moving average parameter. The first
is based on the relationship between the tail of the process MA(1) and the innovations
which have positive stable distribution. We establish its asymptotic normality and study
its performance. The second estimator is for MA(1) process driven by α stable variables
with (0 < α < 2) using the extremal index. We analyze their performance through a
simulation study. For the future work we will try to find the asymptotic distribution of
the second estimator.
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