Kybernetika 54 no. 1, 61-78, 2018

Asynchronous sampling-based leader-following consensus in second-order multi-agent systems

Zhengxin Wang, Yuanzhen Feng, Cong Zheng, Yanling Lu and Lijun PanDOI: 10.14736/kyb-2018-1-0061


This paper studies the leader-following consensus problem of second-order multi-agent systems with directed topologies. By employing the asynchronous sampled-data protocols, sufficient conditions for leader-following consensus with both constant velocity leader and variable velocity leader are derived. {Leader-following quasi-consensus can be achieved in multi-agent systems when all the agents sample the information asynchronously.} Numerical simulations are provided to verify the theoretical results.


multi-agent systems, consensus, leader-following, asynchronous sampling


93D05, 93C57


  1. S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia 1994.   DOI:10.1137/1.9781611970777
  2. Y. Chen, H. Dong, J. Lü, X. Sun and K. Liu: Robust consensus of nonlinear multiagent systems with switching topology and bounded noises. IEEE Trans. Cybern. 46 (2016), 6, 1276-1285.   DOI:10.1109/tcyb.2015.2448574
  3. L. Ding and W. X. Zheng: Consensus tracking in heterogeneous nonlinear multi-agent networks with asynchronous sampled-data communication. Syst. Control Lett. 96 (2016), 151-157.   DOI:10.1016/j.sysconle.2016.08.001
  4. E. Fridman and M. Dambrine: Control under quantization, saturation and delay: An LMI approach. Automatica 45 (2009), 10, 2258-2264.   DOI:10.1016/j.automatica.2009.05.020
  5. Y. Gao and L. Wang: Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology. IEEE Trans. Automat. Contr. 56 (2011), 5, 1226-1231.   DOI:10.1109/tac.2011.2112472
  6. Y. Gao, M. Zuo, T. Jiang, J. Du and J. Ma: Asynchronous consensus of multiple second-order agents with partial state information. Int. J. Syst. Sci. 44 (2013), 5, 966-977.   DOI:10.1080/00207721.2011.651171
  7. K. Gu, V. L. Kharitonov and J. Chen: Stability of Time-Delay Systems. Birkhäuser, Boston 2003.   DOI:10.1007/978-1-4612-0039-0
  8. Z.-H. Guan, F.-L. Sun, Y.-W. Wang and T. Li: Finite-time consensus for leader-following second-order multi-agent networks. IEEE Trans. Circuits Syst. I: Regul. Pap. 59 (2012), 11, 2646-2654.   DOI:10.1109/tcsi.2012.2190676
  9. W. He, G. Chen, Q.-L. Han, W. Du, J. Cao and F. Qian: Multi-agent systems on multilayer networks: Synchronization analysis and network design. IEEE Trans. Syst. Man Cybernet.: Syst. 47 (2017), 7, 1655-1667.   DOI:10.1109/tsmc.2017.2659759
  10. W. He, F. Qian, J. Lam, G. Chen, Q.-L. Han and J. Kurths: Quasi-Synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica 62 (2015), 249-262.   DOI:10.1016/j.automatica.2015.09.028
  11. W. He, B. Zhang, Q.-L. Han, F. Qian, J. Kurths and J. Cao: Leader-following consensus of nonlinear multiagent systems with stochastic sampling. IEEE Trans. Cybern. 47 (2017), 2, 327-338.   CrossRef
  12. G. Hu: Robust consensus tracking of a class of second-order multi-agent dynamic systems. Syst. Control Lett. 61 (2012), 1, 134-142.   DOI:10.1016/j.sysconle.2011.10.004
  13. N. Huang, Z. Duan and G. R. Chen: Some necessary and sufficient conditions for consensus of second-order multi-agent systems with sampled position data. Automatica 63 (2016), 148-155.   DOI:10.1109/chicc.2016.7554607
  14. Y. Hong, G. Chen and L. Bushnell: Distributed observers design for leader-following control of multi-agent networks. Automatica 44 (2008), 3, 846-850.   DOI:10.1016/j.automatica.2007.07.004
  15. Y. Hong, J. Hu and L. Gao: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 7, 1177-1182.   DOI:10.1016/j.automatica.2006.02.013
  16. R. A. Horn and C. R. Johnson: Matrix Analysis. Secod edition. Cambridge University Press, New York 2013.   CrossRef
  17. Z. Li, W. Ren, X. Liu and L. Xie: Distributed consensus of linear multi-agent systems with adaptive dynamic protocols. Automatica 49 (2013), 1986-1995.   DOI:10.1016/j.automatica.2013.03.015
  18. X. Liu, D. W. Ho, J. Cao and W. Xu: Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances. IEEE Trans. Neural Netw. Learn Syst. 28 (2017), 11, 2826-2830.   DOI:10.1109/tnnls.2016.2599199
  19. Y. Liu, Y. Zhao and Z. Shi: Sampled-data based consensus for multiple harmonic oscillators with directed switching topology. J. Franklin Inst. 354 (2017), 3519-3539.   DOI:10.1016/j.jfranklin.2017.02.025
  20. R. Olfati-Saber and R. M. Murray: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Contr. 49 (2004), 9, 1520-1533.   DOI:10.1109/tac.2004.834113
  21. P. Park, J. W. Ko and C. Jeong: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47 (2011), 1, 235-238.   DOI:10.1016/j.automatica.2010.10.014
  22. K. Peng and Y. Yang: Leader-following consensus problem with a varying-velocity leader and time-varying delays. Physica A 388 (2009), 2-3, 193-208.   DOI:10.1016/j.physa.2008.10.009
  23. W. Ren and R. W. Beard: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Contr. 50 (2005), 5, 655-661.   DOI:10.1109/tac.2005.846556
  24. W. Ren: On consensus algorithms for double-integrator dynamics. IEEE Trans. Automat. Contr. 53 (2008), 6, 1503-1509.   DOI:10.1109/tac.2008.924961
  25. J. H. Seo, H. Shim and J. Back: Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach. Automatica 45 (2009), 11, 2659-2664.   DOI:10.1016/j.automatica.2009.07.022
  26. B. Shen, Z. Wang and X. Liu: Sampled-data synchronization control of dynamical networks with stochastic sampling. IEEE Trans. Automat. Contr. 57 (2012), 10, 2644-2650.   DOI:10.1109/tac.2012.2190179
  27. Q. Song, J. Cao and W. Yu: Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. Syst. Control Lett. 59 (2010), 9, 553-562.   DOI:10.1016/j.sysconle.2010.06.016
  28. G. Wen, Z. Duan, W. Yu and G. Chen: Consensus in multi-agent systems with communication constraints. Int. J. Robust Nonl. Contr. 22 (2012), 2, 170-182.   DOI:10.1002/rnc.1687
  29. Z. Wang and J. Cao: Quasi-consensus of second-order leader-following multi-agent systems. IET Contr. Theory Appl. 6 (2012), 4, 545-551.   DOI:10.1049/iet-cta.2011.0198
  30. Z. Wang, G. Jiang, W. Yu, W. He, J. Cao and M. Xiao: Synchronization of coupled heterogeneous complex networks. J. Franklin Inst. 354 (2017), 10, 4102-4125.   DOI:10.1016/j.jfranklin.2017.03.006
  31. F. Xiao and L. Wang: Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays. IEEE Trans. Automat. Contr. 53 (2008), 8, 1804-1816.   DOI:10.1109/tac.2008.929381
  32. W. Yu, G. Chen and M. Cao: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46 (2010), 8, 1089-1095.   DOI:10.1016/j.automatica.2010.03.006
  33. W. Yu, G. Chen, M. Cao and J. Kurths: Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. IEEE Trans. Syst. Man Cybern. B: Cybern. 40 (2010), 3, 881-891.   DOI:10.1109/tsmcb.2009.2031624
  34. W. Yu, G. Chen, M. Cao and W. Ren: Delay-induced consensus and quasi-consensus in multi-agent dynamical systems. IEEE Trans. Circuits Syst. I: Regul. Pap. 60 (2013), 10, 2679-2687.   DOI:10.1109/tcsi.2013.2244357
  35. W. Yu, W. X. Zheng, G. Chen, W. Ren and J. Cao: Second-order consensus in multi-agent dynamical systems with sampled position data. Automatica 47 (2011), 7, 1496-1503.   DOI:10.1016/j.automatica.2011.02.027
  36. J. Zhan and X. Li: Asynchronous consensus of multiple double-integrator agents with arbitrary sampling intervals and communication delays. IEEE Trans. Circuits Syst. I: Regul. Pap. 62 (2015), 9, 2301-2311.   DOI:10.1109/tcsi.2015.2451792
  37. W. Zhu and D. Cheng: Leader-following consensus of second-order agents with multiple time-varying delays. Automatica 46 (2010), 12, 1994-1999.   DOI:10.1016/j.automatica.2010.08.003