Kybernetika 54 no. 1, 135-154, 2018

Bio-inspired decentralized autonomous robot mobile navigation control for multi agent systems

Alejandro Rodriguez-Angeles and Luis-Fernando Vazquez ChavezDOI: 10.14736/kyb-2018-1-0135


This article proposes a decentralized navigation controller for a group of differential mobile robots that yields autonomous navigation, which allows reaching a certain desired position with a specific desired orientation, while avoiding collisions with dynamic and static obstacles. The navigation controller is constituted by two control loops, the so-called \emph{external control} loop is based on crowd dynamics, it brings autonomous navigation properties to the system, the \emph{internal control loop} transforms the acceleration and velocity references, given by the external loop, into the driving translational and rotational control actions to command the robots. The controller physical application could be based on several onboard sensors information, in such a way that the control strategy can be programmed individually into a group of mobile robots, this allows a decentralized performance, rendering the crowd dynamics behavior. Each mobile robot is considered as an agent to which it is associated a \emph{comfort zone} with a certain radius, that produces a repulsive force when it is trespassed by its environment or by another agent, this yields the necessary response to avoid collisions. Meanwhile, attractive forces drive the agents from their instantaneous position to the desired one. For collision-free navigation, Lyapunov stability method allows obtaining the stability conditions of the proposed controller and guarantees asymptotic convergence to the desired position and orientation. The navigation controller is tested by simulations, which supports the stability and convergence theoretical results.


crowd dynamics, mobile robot, autonomous navigation


68T40, 68T42, 93C85


  1. O. Castillo, H. Neyoy, J. Soria, P. Melin and F. Valdez: A new approach for dynamic fuzzy logic parameter tuning in AntColony Optimization and its application in fuzzy control of a mobile robot. Applied Soft Computing 28 (2015), 150-159.   DOI:10.1016/j.asoc.2014.12.002
  2. H. Cheng, H. Chen and Y. Liu: Topological indoor localization and navigation for autonomous mobile robots. IEEE Trans. Autonom. Sci. Engrg. 12 (2015), 2, 729-738.   DOI:10.1109/tase.2014.2351814
  3. X. Chen, Y. Yang, S. Cai and J. Chen: Modeling and analysis of multi-agent coordination using nearest neighbor rules informatics in control.    DOI:10.1109/car.2009.18
  4. Y. Dai and S. G. Lee: Formation control of mobile robots with obstacle avoidance based on GOACM using onboard sensors. Int. J. Control, Automat. Systems 12 (2014), 5, 1077-1089.   DOI:10.1109/car.2009.18
  5. M. S. Ganeshmurthy and G. R. Suresh: Path planning algorithm for autonomous mobile robot in dynamic environment. In: 3rd International Conference on Signal Processing, Communication and Networking (ICSCN), 2015.   DOI:10.1109/icscn.2015.7219901
  6. D. Helbing, L. Buzna, A. Johansson and T. Werner: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transport. Sci. 39 (2005), 1, 1-24.   DOI:10.1287/trsc.1040.0108
  7. D. Helbing, I. Farkas and T. Vicsek: Simulating dynamical features of escape panic. Nature 407 (2000), 487-490.   DOI:10.1038/35035023
  8. D. Helbing, P. Molnár, I. J. Farkas and K. Bolay: Self-organizing pedestrian movement Environment and planning B: planning and design. SAGE Publications Sage UK: London, England 28 (2001), 361-383.   DOI:10.1068/b2697
  9. H. K. Khalil: Nonlinear Systems. Prentice Hall, Upper Saddle River 1996.   CrossRef
  10. D. Kostic, S. Adinandra, J. Caarls, N. van de Wouw and H. Nijmeijer: Collision-free tracking control of unicycle mobile robots. In: Proc. 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference (CDC/CCC), 2009, pp. 5667-5672.   DOI:10.1109/cdc.2009.5400088
  11. H. G. Meyer, O. J. N. Bertrand and J. Paskarbeit: A bio-inspired model for visual collision avoidance on a hexapod walking robot. In: Biomimetic and Biohybrid Systems: 5th International Conference,Living Machines (F. Nathan, F. Lepora, A- Mura, M. Mangan, P. F. M J. Verschure, M. Desmulliez, and T. J. Prescott, eds.), Springer Verlag 2016, pp. 167-178.   DOI:10.1007/978-3-319-42417-0_16
  12. H. Omrane, M. S. Masmoudi and M. Masmoudi: Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation. Computational Intelligence and Neuroscience, 2016.   DOI:10.1155/2016/9548482
  13. U. Orozco-Rosas, O. Montiel and R. Sepulveda: Pseudo-bacterial potential field based path planner for autonomous mobile robot navigation. Int. J. Advanced Robotic Systems 12 (2015), 7, 81.   DOI:10.5772/60715
  14. T. Tomizawa and Y. Shibata: Oncoming human avoidance for autonomous mobile robots based on gait characteristics. J. Robotics Mecatronics 28 (2016), 4, 500-507.   DOI:10.20965/jrm.2016.p0500
  15. K. Ueno, T. Kinoshita, K. Kobayashi and K. Watanabe: Development of a robust path-planning algorithm using virtual obstacles for an autonomous mobile robot. J. Robotics Mechatronics 27 (2015), 3, 286-292.   DOI:10.20965/jrm.2015.p0286
  16. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet: Novel type of phase transition in a system of self-driven particles. Physical Rev. Lett. 75 (1995), 6, 1226-1229.   DOI:10.1103/physrevlett.75.1226
  17. C. Xuesong, Y. Yimin, C. Shuting and C. Jianping: Modeling and analysis of multi-agent coordination using nearest neighbor rules. In: Int. Asia Conference on Informatics in Control, Automation and Robotics 2009.   DOI:10.1109/car.2009.18
  18. R. W. Brockett (EDS.): Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory 27 (1983), Birkhauser, Boston 1983.   CrossRef
  19. C. Samson and K. Ait-Abderrahim: Feedback control of a nonholonomic wheeled cart in cartesian space. In: Proc. IEEE International Conference on Robotics and Automation 1991.   DOI:10.1109/robot.1991.131748
  20. C. Samson and K. Ait-Abderrahim: Mobile Robot Control. Part 1: Feedback Control of Nonholonomic Wheeled Cart in Cartesian Space. INRIA, 1990.   CrossRef
  21. C. C. de Wit, B. Siciliano and G. Bastin (eds.): Theory of Robot Control. Springer Science and Business Media 2012.   DOI:10.1007/978-1-4471-1501-4