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BIO-INSPIRED DECENTRALIZED AUTONOMOUS ROBOT
MOBILE NAVIGATION CONTROL FOR MULTI AGENT
SYSTEMS

Alejandro Rodriguez-Angeles and Luis-Fernando Vazquez-Chavez

This article proposes a decentralized navigation controller for a group of differential mobile
robots that yields autonomous navigation, which allows reaching a certain desired position with
a specific desired orientation, while avoiding collisions with dynamic and static obstacles. The
navigation controller is constituted by two control loops, the so-called external control loop
is based on crowd dynamics, it brings autonomous navigation properties to the system, the
internal control loop transforms the acceleration and velocity references, given by the external
loop, into the driving translational and rotational control actions to command the robots. The
controller physical application could be based on several onboard sensors information, in such
a way that the control strategy can be programmed individually into a group of mobile robots,
this allows a decentralized performance, rendering the crowd dynamics behavior.

Each mobile robot is considered as an agent to which it is associated a comfort zone with
a certain radius, that produces a repulsive force when it is trespassed by its environment or
by another agent, this yields the necessary response to avoid collisions. Meanwhile, attractive
forces drive the agents from their instantaneous position to the desired one. For collision-free
navigation, Lyapunov stability method allows obtaining the stability conditions of the proposed
controller and guarantees asymptotic convergence to the desired position and orientation. The
navigation controller is tested by simulations, which supports the stability and convergence
theoretical results.
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1. INTRODUCTION

When developing autonomous vehicles two major issues have to be considered, first,
position determination of the vehicle, second, obstacle collision avoidance. Particularly
for the second case, several methods are proposed, some of them based on potential fields
or geometric relations between the vehicle and its environment. Potential fields are in
general based on external sensors, which involves that the environment is structured and
well known, then internal sensors might be used as a complement to determine when an
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action should be performed. A potential field is created around an obstacle, such that
the distance to it determines the strength of the repulsive effect, e. g. [10].

The construction of the potential field implies knowing the dimensions of the object
and its position on beforehand. In [15], potential fields are considered in combination
with virtual obstacles in order to generate dynamic path-planning for an autonomous
mobile robot, the results are confirmed by simulations and experiments, but lack a for-
mal stability analysis. Usually, potential fields offer suboptimal solutions to the path
planning problem, this because of the local minimum issue, as well as interactions be-
tween different potential fields. Trying to avoid local solutions, in [13] is proposed to use
the so-called pseudo-bacterial genetic algorithm to guarantee an optimal and safe path
for autonomous navigation, once more the goal is to obtain a safe path but knowledge of
the obstacles is still required. To generate dynamic safe paths in presence of static and
dynamic obstacles, in [5], is considered a heuristic-based method to search the feasible
initial path efficiently, then the results are combined with an optimization algorithm for
dynamic robot path planning.

In order to avoid collisions the so-called Geometric Obstacle Avoidance Control
Method (GOACM), has been considered, this method is based on information regarded
for onboard sensors, see for instance [4]. When one of the sensors detects an obstacle
within a safety range the GOACM is triggered. This method uses the distance and
the angle related to the sensor to determine a collision-free waypoint, that is commonly
located on a specified distance upon a perpendicular line to the obstacle. This method
is fully reactive and does not consider previous knowledge of the obstacles, however,
GOACM, in general, fails for non-convex obstacles, corridors, or highly irregular obsta-
cle shapes.

Another common way to achieve autonomous motion and obstacle avoidance for
a mobile robot is by self-generating a map of the environment and classifying the obsta-
cles that lie within it. Such techniques as the Simultaneous Localization and Mapping
(SLAM) are very popular in mobile robots. In [2] a map-building technique is presented,
it integrates onboard resources, the effectiveness of its method is proved by indoor ex-
periments.

From the above-mentioned approaches, it is clear that most methods for autonomous
navigation are focused on either independent navigation control or obstacle avoidance
control. Such that few works addressed both problems in a unified strategy. In [12]
an integrated approach to solving navigation and obstacle avoidance simultaneously is
proposed, that solution is based on fuzzy logic and it is tested by simulations. Another
work that integrates fuzzy logic techniques for trajectory control of mobile robots is
[1], in this work an Ant Colony Optimization approach is considered in combination
with fuzzy logic to render a fuzzy control for trajectory tracking, however, the safe path
planning problem is led as another stage.

It is known that efficient autonomous navigation and obstacle avoidance can be found
in biological systems, such as schools of fish, herds of quadrupeds, flocks of flying birds
and human crowd motion. A way to model such systems is by considering the individuals
as self-driven particles, see [16]. Research on crowd dynamics helps to predict large crowd
behavior at a series of different events with particular circumstances, e. g. festivals
or football matches as described in [6], [7], and [8]. When information regarding the
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movement of a crowd is well known it can be used to describe natural phenomena as
mentioned above. A bio-inspired application related to mobile robots is presented in
[11], where a bio-inspired collision avoidance method is proposed for a hexapod walking
robot. On the other hand in [11], insect behavior is considered to design a collision
avoidance algorithm based on visual information.

The study of biological navigation systems, particularly in humans, has been useful
to design mobile robot obstacle avoidance strategies. It is well known that mobile robots
interact with humans frequently, whereby, collisions are likely to occur. This is where lies
the importance to consider how humans avoid collisions in order to design the avoiding
maneuvers of the mobile robots as well. In [14] human gait characteristics are taken into
account to determine the evasive actions of a robot, experimental results support this
proposal, but a question arises when considering human collision avoidance behavior
and mobile robot interaction, i. e. Why not to characterize human collision avoidance
actions, such as in [7], and design robot collision avoidance strategies based on such
human behavior?

In this article, the goal is to provide autonomy to a differential mobile robot, consid-
ered as an agent into a multi-agent system, in order to move it from an initial to a final
goal position, reaching a specific desired orientation and evading dynamic and static
obstacles such as other agents and environment boundaries. The proposed controller is
based on the crowd dynamics model introduced by Dirk Helbing et al. [7], which de-
scribes the behavior of multiple particles that are immersed into the same environment,
by the so-called generalized force model. This model is used to control the dynamics of
a mass point (particle), in order to move it in a prescribed direction at a desired velocity.

In this approach, the above-mentioned particles are substituted by differential mobile
robots, as in the base model, each one has an associated comfort zone, which when is
violated by another mobile robot, wall or static obstacle, generates a repulsive force to
steer the mobile robot away from it. When there is no possibility of collision, the goal
position attractive forces are dominant, because of that, a straight line direction and
the distance are computed from the actual instantaneous position to the desired one.
Using the distance between nearest neighbors and to a final position has been widely
used to design multi-agent systems where mobile robot formation is achieved, e. g. [3].
Extending the ideas from Helbing [7] to the case of differential mobile robots is not im-
mediate, since the last one is generally modeled at a kinematic level and controlled by a
combination of translational and angular velocities, whilst in [7] acceleration of the mass
point is taken into account. Furthermore, when a particle is considered the orientation
is worthless, in contrast, for differential mobile robots, the orientation control is funda-
mental to produce translational velocities that satisfy the nonholonomic constraint that
this kind of robots manifests.

An extension of [7] is proposed resulting in a Bio-inspired autonomous navigation
controller, so that, navigation performance resembles the behavior of an individual into a
crowd situation within a constrained environment, performing evasive maneuvers while
driving to the target position, where it will be oriented in a certain direction. The
proposed navigation controller yields asymptotic convergence to the desired position
and orientation in collision-free navigation conditions, the Lyapunov method is used
to guarantee such stability properties. The above is tested by a series of simulations in
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a multi-agent system constituted by differential mobile robots. For comparison purposes,
two cases are considered, collision-free navigation and collision navigation.

2. AUTONOMOUS NAVIGATION CONTROLLER DESIGN

The multi-agent system is conformed by differential mobile robots, that are modeled by
their kinematics as in (1), this can be graphically seen in Figure 1.

Fig. 1. Differential mobile robot.

ẋi = vi cos θi
ẏi = vi sin θi (1)
θ̇i = ωi.

Where the pose of each robot is given by its xi-position, yi-position, represented
through the instantaneous position vector ri = [xi yi], and the orientation angle θi. The
robot control inputs are the translational and angular velocities, vi and ωi respectively,
where the subindex i identifies the ith robot into the multi-agent system.

The proposed decentralized autonomous navigation controller is composed by two
control loops, see Figure 2, the external control loop is based on crowd dynamics, it
allows to achieve a desired position [xi yi] and brings autonomous navigation proper-
ties including obstacle avoidance, meanwhile, the internal control loop transforms the
acceleration and velocity references, given by the external loop, into the driving transla-
tional vi and rotational ωi control actions of the robot, yielding regulation to a desired
orientation θdi as well.

2.1. External control loop

This control loop processes the generalized forces Bio-inspired algorithm proposed by
Dirk Helbing et al. [7], in which is assumed that the forces developed by each agent
consist of both socio-psychological and physical forces.

For fully comprehension purposes the original force model is presented and described
in depth, besides, this is useful to contrast the original force model to the particular
one that is proposed to drive differential mobile robots. In (2) the total resulting force
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Fig. 2. Closed loop navigation controller.

is calculated by adding up three different terms, the first one delivers the forces that
are needed to lead the particle in a certain direction, the second term fij represents the
forces that are manifested when interactions between particles arises, the third and final
term fiW denotes the reaction forces between ith agent and its environment or static
obstacles.

miv̇i(t) = mi
v0
i (t)vd,i(t)− vi(t)

τi
+
∑
j(6=i)

fij +
∑
W

fiW . (2)

As mentioned earlier, it is considered a group of particles of mass mi, where their
movement is triggered by attractive and repulsive forces, providing translational velocity
vi(t) = [vxi vyi ]

T and acceleration v̇i(t) = [v̇xi v̇yi ]
T references in X and Y direction.

Each particle is trying to adjust its actual velocity vi(t), in a certain characteristic time
τi, to the desired velocity composed by v0

i (t)vd,i(t) as long as the ith agent does not
interact with other agents or obstacles.

The term fij in (2), generates repulsive interaction forces to avoid collisions between
agents i and j as follows.

fij =
[
Aie

[(rij−dij)/Bi] + kigi(rij − dij)
]
nij + κig(rij − dij)∆vtjitij . (3)

Where Aie
[(rij−dij)/Bi] describes a tendency to remain into a personal space, re-

producing the behavior of humans to stay away, as far as they feel comfortable, from
other people, here Ai and Bi are constant gains. rij = (ri + rj) represents the sum
of the radii of two agents comfort zones, the distance between two agents is denoted
by dij = ‖ri − rj‖, with ri and rj being their instantaneous positions, the normalized
vector pointing from agent j to agent i is nij = [nij,x nij,y] = (ri − rj)/dij .

The terms kig(rij − dij)nij and κig(rij − dij)∆vtjitij render normal and tangential
forces respectively, such forces arise when agents invade another agent’s comfort zone.
The normal and tangential forces role is to push, slow down and turn the agents, de-
pending on the case, in order to stay away from other agents and obstacles. Function
g(·) is zero if dij ≥ rij , this is when the comfort zones aren’t violated, otherwise i. e.
when dij < rij , g(·) is equal to its argument, in this case (rij − dij). The tangential
vector is given by tij = (−nij,y, nij,x), while the tangential relative velocity between
agents can be expressed as ∆vtji = (vj − vi) · tij .
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On the other hand, the reaction forces fiW between agents and its environment or
static obstacles depend on the approaching velocity of ith agent to the obstacle W ,
which is given by

fiW =
[
Aie

[(ri−diW )/Bi] + kigi(ri − diW )
]
niW + κig(ri − diW )(vi · tiW )tiW . (4)

As in (3), the term Aie
[(ri−diW )/Bi] describes the tendency to keep free their personal

space and to stay away from obstacles in the environment. ri is the radii of the ith
agent comfort zone, diW is the distance between the agent and a static obstacle W ,
while niW is the normalized vector between the agent i and the obstacle W , finally, tiW
is the normalized tangential vector. Same as for the interaction forces, the function g(·)
becomes zero when there are no interactions and its argument otherwise.

In equations (3) and (4), ki and κi are positive constant parameters that can be
changed to influence the magnitude of the normal and tangential forces respectively.

Note that in the repulsive force expressions (3) and (4) the normal component depends
only on the distance to the obstacle, meanwhile the tangential terms, that causes rotation
of the agents, take into account whether the obstacle is dynamic or static, particularly
in (3) the tangential term considers the relative approaching velocity between agents,
whereby, the higher the relative approaching velocity, harder the turning action. On
the other side in (4), is only considered the ith agent velocity which corresponds to
the approaching velocity to the obstacle. Through this, it becomes evident that the
difference within that expressions resides in the way which the relative speed between
agents and obstacles is considered, therefore, when an agent stops moving it will be
recognized as a static obstacle by the rest of the agents.

In contrast to the Helbing’s force model, at our multi-agent navigation system it is
required to move each agent from its instantaneous position ri = [xi yi]T to the desired
one rdi = [xdi ydi ]

T , whereby the original force model is modified considering distance
based control techniques, thus the ith robot position error ei is defined as

ei =
[
ex,i
ey,i

]
=
[
xdi
ydi

]
−
[
xi
yi

]
. (5)

Equation (5) provides a vector through which the ith agent could reach its objective,
simultaneously it calculates the distance between the instantaneous and final positions,
thus the agent will move faster as farther from the desired position, and slower as closer
to it. This might result in unsatisfactory performance because of slow convergence, [17].
To render a better response and faster convergence, normalization of the vector ei is
considered.

Thereby each agent will try to reach its desired position following a straight line
calculated from the vector ei, whose normalization allows the desired velocity magnitude
v0
i , which is considered as a constant, to be imposed during the trajectory towards the

desired position. The agent will stop moving when the final position is achieved i. e.
when ei = 0. Since the mobile robots are kinematically controlled their masses could be
considered unitary, thus the proposed force model is given by

v̇i(t) =
v0
i ei(t)− vi(t)

τi
+
∑
j(6=i)

fij +
∑
W

fiW . (6)
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Once more the first term in (6) causes that each agent regulates its actual velocity
vi(t) attempting to equalize the magnitude of the desired speed v0

i in a certain charac-
teristic time τi, which represents the time gap in that the comparison and adjustment
of the velocity variables are carried out, at the same time, the agent is steering in the
desired direction ei, meanwhile the two last terms fij and fiW are intended to generate
repulsive forces to avoid collisions with dynamic and static obstacles respectively.

From analysis and simulations of the repulsive force components (3) and (4), it is
concluded that the terms Aie[(rij−dij)/Bi] and Aie

[(ri−diW )/Bi], generate a permanent
repulsive effect between agents and from agents to static obstacles respectively, regard-
less of whether the agents reach the desired position or not, this situation avoids the
possibility to maintain the final position once it has been reached. For this reason, in the
proposed navigation controller these terms are discarded. Thus, the interaction forces
between agents are given by

fij = kig(rij − dij)nij + κig(rij − dij)∆vtjitij . (7)

Where each variable has already been described. By performing the same modifica-
tion as in (7), the reaction forces between agents and its environment are given by

fiW = kig(ri − diW )niW + κig(ri − diW )(vi · tiW )tiW . (8)

Where all the involved variables were described above.

2.2. Internal control loop

This control loop relates the force model signals vxi and vyi , (components of vector vi)
and the acceleration ones v̇xi and v̇yi given by (6), into the driving signals vi and ωi of
the kinematic model (1). So the translational velocity input vi is proposed as:

vi = Kvi (vxi cos(θi) + vyi sin(θi)) (9)

with Kvi a positive constant tuning gain.
Note that the above velocity control action tries to generate an appropriate trans-

lational velocity in order to achieve the desired cartesian position, however, it is still
required to generate the appropriate rotational velocity profile. Furthermore, it is not
only important to achieve the cartesian goal position but some tasks do require to reach
certain desired orientation value.

Since R. W. Brocket [18] has established that a non-holonomic system can only be
controlled by discontinuous or time-variant control laws, in order to guarantee that the
proposed controller overcomes this restriction, the structure for the rotation control
variable is based on non-linear time-varying feedback control laws, that was developed
by C. Samson et al. [19, 20] as well as by C. Canudas et al. [21], that allows the mobile
robot to be controlled from its center of rotation which is located at the midpoint of the
wheel axis. This ensures a complete control of the agents even while their non-holonomic
constraints are considered, moreover, it becomes possible to regulate their orientation by
introducing the definition of the orientation error eθi , thus the expression (10) calculates
the difference between the instantaneous agent orientation θi and the desired one θdi .

eθi = θi − θdi . (10)



142 A. RODRIGUEZ-ANGELES AND L.F. VAZQUEZ-CHAVEZ

So that the orientation control action is proposed as

ωi = Kwi

(
v̇yivxi − v̇xivyi

ε+ v2
i

)
sin(eθi)
eθi

−Kθieθi . (11)

Where Kwi and Kθi are positive, constant control gains, also a positive parameter
ε ≈ 0 is introduced to avoid the singularity when vi = 0.

Note that (11) is well defined since sin(eθi )

eθi
is a continuous smooth function in eθi ,

which satisfies that sin(eθi )

eθi
=
∫ 1

0
cos(ρeθi) dρ and limeθi→0

sin(eθi )

eθi
= 1.

Based on the above considerations, the navigation controller will allow each agent to
reach the desired position references, orientate themselves to the required value and stay
in position at the end of the trajectory.

3. OBSTACLE FREE NAVIGATION: CLOSED LOOP STABILITY

In this section stability properties for obstacle-free navigation are provided, specifically
the closed loop between controller (6), (7), (8), (9), (11) and the mobile robot described
by (1). When obstacle-free navigation is considered the repulsive forces (7) and (8) are
zero. Thus, by defining the state variables z1,i = ex,i, z2,i = ey,i, z3,i = eθi , z4,i = vxi
and z5,i = vyi , the closed loop for the ith agent is given by

żi =



ż1,i

ż2,i

ż3,i

ż4,i

ż5,i


=



−Kvi

(
z4,i cos2(θi) + z5,i sin(θi) cos(θi)

)
−Kvi

(
z4,i sin(θi) cos(θi) + z5,i sin2(θi)

)
Kwiv

0
i

τi(ε+ v2
i )

(z2,iz4,i − z1,iz5,i)
sin(z3,i)
z3,i

−Kθiz3,i

1
τi

(
v0
i z1,i − z4,i

)
1
τi

(
v0
i z2,i − z5,i

)


. (12)

Note that the origin żi = 0 is an equilibrium point of the closed loop system (12),
such that stability properties can be stated as follows.

Theorem 3.1. Considering the collision-free navigation case, such that the closed loop
between controller (6), (7), (8), (9), (11) and the ith mobile robot (1) is given by (12).
If all control gains are positive and the conditions imposed to the control gains given by
(13) are satisfied, then the origin of the closed loop system is asymptotically stable.

0 <
Kwi

ε
< 1 ,

v0
i

τi
>

1.2Kvi

1− Kwi
ε

. (13)

P r o o f . Consider the candidate Lyapunov function Vi = 1
2z
T
i zi that is a positive defi-
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nite function. By straight forward computations the time derivative of Vi is given by

V̇i = −Kθiz
2
3,i −

z2
4,i

τi
−
z2
5,i

τi
− z1,iz4,i

{
−v

0
i

τi
+Kvi cos2(θi)

}

−z1,iz5,i
{

Kwiv
0
i

τi(ε+ v2
i )

sin(z3,i) +Kvi sin(θi) cos(θi)
}

−z2,iz4,i
{
−Kwiv

0
i

τi(ε+ v2
i )

sin(z3,i) +Kvi sin(θi) cos(θi)
}

−z2,iz5,i
{
−v

0
i

τi
+Kvi sin2(θi)

}
. (14)

In order to proof that V̇i is definite negative, its upper bound is computed, for that it
is considered that 1

2

(
a2 + b2

)
≥ −ab, furthermore since v2

i ≥ 0 then, worst case implies
v2
i = 0, such that V̇i can be rewritten as

V̇i ≤ −Kθiz
2
3,i −

z2
4,i

τi
−
z2
5,i

τi

−z2
1,i

{
v0
i

τi

[
1− Kwi

ε
sin(z3,i)

]
−Kvi

[
cos2(θi) + sin(θi) cos(θi)

]}
−z2

2,i

{
v0
i

τi

[
1 +

Kwi

ε
sin(z3,i)

]
−Kvi

[
sin2(θi) + sin(θi) cos(θi)

]}
−z2

4,i

{
v0
i

τi

[
1 +

Kwi

ε
sin(z3,i)

]
−Kvi

[
cos2(θi) + sin(θi) cos(θi)

]}
−z2

5,i

{
v0
i

τi

[
1− Kwi

ε
sin(z3,i)

]
−Kvi

[
sin2(θi) + sin(θi) cos(θi)

]}
. (15)

By considering the trigonometric functions in (15), it follows that −1 ≤ sin(z3,i) ≤ 1
for z3,i ∈ <, and−0.2 ≤ cos2(θi)+sin(θi) cos(θi) ≤ 1.2, −0.2 ≤ sin2(θi)+sin(θi) cos(θi) ≤
1.2 for θi ∈ <, therefore by considering worst case, (15) can be bounded as

V̇i ≤ −Kθiz
2
3,i −

z2
4,i

τi
−
z2
5,i

τi

−z2
1,i

{
v0
i

τi

[
1− Kwi

ε

]
− 1.2Kvi

}
− z2

2,i

{
v0
i

τi

[
1 +

Kwi

ε

]
− 1.2Kvi

}
−z2

4,i

{
v0
i

τi

[
1 +

Kwi

ε

]
− 1.2Kvi

}
− z2

5,i

{
v0
i

τi

[
1− Kwi

ε

]
− 1.2Kvi

}
. (16)

The conditions given by (13) would guarantee that V̇i is definite negative and V̇i = 0
only at the origin, thus, from standard Lyapunov theory [9], it can be concluded that
the origin of the closed loop system (12) is asymptotically stable. �
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Remark 3.2. Stability analysis of the cases where collisions with dynamic and static
obstacles are possible is not carried out, this because the reaction forces could be different
for each collision situation. For that reason, when the possibility of collisions arises, it
has to be guaranteed that the control gains ki and κi, in the repulsive components (7)
and (8) will result in forces enough to generate fast turning of the agents and therefore
avoiding collisions.

4. SIMULATION RESULTS

In order to prove the performance of the proposed controller over a multi-agent system,
six differential mobile robots are considered.

A simulator was made in MATLABr, it creates a movie showing static obstacles and
the movement of each agent as well as the trajectory followed to avoid collisions, see
Figure 3. The blue lines and circular shape represent the environment which, in this
case, is given by horizontal walls at 0 and 1.1 [m] and a column of radius 0.25 [m], in
the middle. The goal is to move the agents from the initial position at the left to the
desired position at the right, where every agent must reach a desired final orientation.
The agents are represented by the small circles whit an inscribed pentagon pointing as
its orientation angle. The bigger circle around each agent represents their comfort zone,
which allows identifying interactions and possible collisions.

Fig. 3. Simulation enviroment.

To carry out the tests, two cases are simulated, in the first one, a collision-free
environment is considered i. e. there is no interaction between agents and obstacles. In
the second case, a circular object (column) is introduced in the center of the working area
as a static obstacle, this generates the possibility of collisions between agents since each
one will try to evade the column. For both cases, free and possible collision navigation,
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the initial conditions, desired position, and orientation remains the same for every agent,
these values are listed in Table 4. Along with all simulations normalization of ei, given
by (5), is considered to yield faster convergence.

Agent xi(0) yi(0) θi(0) xdi ydi θdi
1 0.0 0.1 0.0 1.1 0.1 0.2
2 0.3 0.25 0.0 1.4 0.25 -0.2
3 0.15 0.4 0.0 1.25 0.4 0.2
4 0.0 0.95 0.0 1.1 0.95 -0.2
5 0.3 0.8 0.0 1.4 0.8 0.2
6 0.15 0.65 0.0 1.25 0.65 0.2

Tab. 1. Initial conditions, desired position and orientation, in [m]

and [rad] respectively.

4.1. Collision-free navigation case

For this case, there is no column into the environment and due the initial and desired
position and orientation values, the agents move in a straight line through the working
area. The control gains are tuned in the same way for every agent as can be seen at Table
4.1. The comfort zone radius is ri = 0.1 [m] and the parameter to avoid singularities in
(11) is set as ε = 0.01.

Gain v0
i [m/s] τi ki κi Kvi Kwi Kθi

Value 0.5 0.005 150 300 0.07 0.009 0.1

Tab. 2. Navigation control gains, obstacle free navigation scenery.

As expected the agents move in a straight line from its initial position to the desired
one as shown in Figure 4. The cartesian position and orientation variables for each agent
are shown in Figures 5, 6, and 7 respectively.

In order to analyze Figure 5 it is important to notice that from Table 4, there are
three pairs of agents that share the initial and desired x-position, these pairs are agents
1 and 4, agents 2 and 5, and agents 3 and 6. Furthermore, the agents are commanded
to move the same distance along the X axis and due they have the same control gains,
their trajectories show the same profile shifted accordingly to the initial y-position.

Since the initial and desired y-position has exactly the same value, as it can be seen in
Table 4, every agent will move through a horizontal straight line, this is clearly observed
in Figure 6.

For this simulation, every agent starts with the same horizontal orientation, as shown
by their initial conditions, nevertheless, there are two different desired values for orien-
tation, there are 0.2 [rad] for agents 1, 3, 5, 6, and -0.2 [rad] for agents 2 and 4, because
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Fig. 4. Agents trajectory at the Cartesian plane, obstacle free

navigation scenery.

Fig. 5. Agent x-position, obstacle free navigation scenery.

all agents have the same control gains their orientation trajectories show the same pro-
file depending on its desired final orientation, that’s why there are only two trajectories
displayed at the figure.

Finally the kinematic translational and rotational control actions for each agent are



Autonomous robot mobile navigation 147

Fig. 6. Agent y-position, obstacle free navigation scenery.

Fig. 7. Agent θ-orientation, obstacle free navigation scenery.

shown in Figures 8 and 9 respectively. Note that the same grouping of agents, as for x
and y trajectories appears. All robots perform the same translational velocity because
they have to move the same distance in the same amount of time. Also, it is possible to
observe that agents 1, 3, 5 and 6 present the same rotational control action, as well as
agents 2 and 4.
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Fig. 8. Agent translational control action, obstacle free navigation

scenery.

Fig. 9. Agent rotational control action, obstacle free navigation

scenery.

4.2. Collision navigation case

For this case, the column is located at the center of the environment, because of this,
when the agents move in a straight line to their target position, the possibility of having
collisions appears due that static obstacle gets into their comfort zone. Once the agents
are avoiding collisions with the column, they begin to invade another agent’s space which
might cause collisions between them, so the dynamic evasion component appears. By
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running this simulation, it was observed that not every control gain listed in Table 4.1 are
suitable to avoid collisions, for this reason some gains are tunned as follows Kvi = 0.5,
Kwi = 0.09 and τi = 0.05.

Remark 4.1. It should be considered that the control gains in Table 4.1 were selected
for obstacle-free navigation and to fulfill the stability conditions given by (13), besides
the fact that such conditions were obtained by boundedness of the time derivative of the
Lyapunov function, thus being conservative conditions.

The cartesian trajectory of each agent is shown in Figure 10, it can be compared
with the displayed in Figure 4, it is clear that the robots modified their straight-line
trajectory to avoid possible collisions with the column, nevertheless, they reach their
desired position. Although it seems that the trajectories for agents 5 and 6 intersect,
there is no collision, because when considering the time-based trajectories in Figure 11,
at the same instant of time their x-position is completely different.

Fig. 10. Agents trajectory at the Cartesian plane, obstacle collision

navigation scenery.

It can be seen in the Figure 11 that the same clusters of agents as for Figure 5 are
generated, this is because they are based on identical initial and desired conditions,
however, their behavior drastically changes to avoid possible collisions, which is evident
for agent 6 that slows down with respect to agent 3 in order to avoid such collisions.

Same as the collision-free case, the agents are intended to go in a straight line from
their initial to the desired y-position, but from Figure 12 it is evident that the agents
modified their trajectory to evade the column, nevertheless, once collisions are avoided
they return to move in a straight line from their instantaneous position to their desired
one, which as mentioned before, is reached by every agent.
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Fig. 11. Agent x-position, obstacle collision navigation scenery.

Fig. 12. Agent y-position, obstacle collision free navigation scenery.

Note at Figure 13 that all agents reached their desired orientation, but along the way,
while there is still a possibility of collision, they perform avoiding maneuvers by turning,
thus when the final position is achieved the controller begins to orientate the robot.

Finally the kinematic translational and rotational control actions for each agent are
shown in Figures 14 and 15 respectively. Note that the agent’s cluster phenomena
observed in Figure 8 and 9 is lost in order to generate the control actions to avoid
collisions. By now it is clear that the followed strategy is implemented by modifying the
agent’s translational velocity and by turning.
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Fig. 13. Agent θ-orientation, obstacle collision navigation scenery.

Fig. 14. Agent translational control action, obstacle collision

navigation scenery.

5. CONCLUSIONS

A force based autonomous navigation controller that steers robots from their actual to
a goal position, reaching certain desired orientation, has been designed. The results
of applying the proposed navigation controller happen to be a full analogon of what
happens in crowd dynamics. Simulations show that violation of comfort zones leads to
very fast turning behavior, instead of moving directly in the direction of the repulsive
force. This turning reaction can be modulated by weighting the normal and tangential
terms of the repulsive force components.
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Fig. 15. Agent rotational control action, obstacle collision navigation

scenery.

A formal stability analysis proves that the navigation controller yields asymptotic
convergence to the desired position and orientation as long as some conditions are satis-
fied and no collisions are present. This result is very useful in order to tune the control
gains for the collision-free case, and then adjusting their values for considering possible
collisions.

The physical implementation of the navigation controller could be based on a series of
onboard sensors in order to determine the distance vectors between agents and obstacles
and it is even possible to calculate their relative velocities, thus being very suitable for
embedded platforms. Furthermore, the decentralized architecture of the control allows
to program it in several mobile robots, rendering a decentralized autonomous navigation
controller that perfectly fits for multi-agent and collaborative mobile robot systems.

As future work, differential mobile robots will be built to prove the navigation con-
troller experimentally and in real time. Also, relaxation on the upper and lower bounds
of the stability conditions given by (13) is being explored, since these conditions are
rather conservative.
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