Kybernetika 53 no. 5, 892-910, 2017

Congruences and homomorphisms on Omega-algebras

Elijah Eghosa Edeghagba, Branimir Šešelja and Andreja TepavčevićDOI: 10.14736/kyb-2017-5-0892

Abstract:

The topic of the paper are $\Omega$-algebras, where $\Omega$ is a complete lattice. In this research we deal with congruences and homomorphisms. An $\Omega$-algebra is a classical algebra which is not assumed to satisfy particular identities and it is equipped with an $\Omega$-valued equality instead of the ordinary one. Identities are satisfied as lattice theoretic formulas. We introduce $\Omega$-valued congruences, corresponding quotient $\Omega$-algebras and $\Omega$-homomorphisms and we investigate connections among these notions. We prove that there is an $\Omega$-homomorphism from an $\Omega$-algebra to the corresponding quotient $\Omega$-algebra. The kernel of an $\Omega$-homomorphism is an $\Omega$-valued congruence. When dealing with cut structures, we prove that an $\Omega$-homomorphism determines classical homomorphisms among the corresponding quotient structures over cut subalgebras. In addition, an $\Omega$-congruence determines a closure system of classical congruences on cut subalgebras. Finally, identities are preserved under $\Omega$-homomorphisms.

Keywords:

congruence, lattice-valued algebra, homomorphism

Classification:

06D72, 08A72

References:

  1. N. Ajmal and K. V. Thomas: Fuzzy lattices. Inform. Sci. 79 (1994), 271-291.   DOI:10.1016/0020-0255(94)90124-4
  2. R. Bělohlávek: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Publishers, New York 2002.   DOI:10.1007/978-1-4615-0633-1
  3. R. Bělohlávek and V. Vychodil: Algebras with fuzzy equalities. Fuzzy Sets and Systems 157 (2006), 161-201.   DOI:10.1016/j.fss.2005.05.044
  4. R. Bělohlávek and V. Vychodil: Fuzzy Equational Logic. Studies in Fuzziness and Soft Computing, Springer 186 (2005), pp. 139-170.   DOI:10.1007/11376422_3
  5. B. Budimirović, V. Budimirović, B. Šešelja and A. Tepavčević: Fuzzy identities with application to fuzzy semigroups. Inform. Sci. 266 (2014), 148-159.   DOI:10.1016/j.ins.2013.11.007
  6. B. Budimirović, V. Budimirović, B. Šešelja and A. Tepavčević: Fuzzy equational classes are fuzzy varieties. Iranian J. Fuzzy Systems 10 (2013), 1-18.   CrossRef
  7. B. Budimirović, V. Budimirović, B. Šešelja and A. Tepavčević: Fuzzy equational classes. In: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference, pp. 1-6.   DOI:10.1109/fuzz-ieee.2012.6251259
  8. B. Budimirović, V. Budimirović, B. Šešelja and A. Tepavčević: $E$-fuzzy groups. Fuzzy Sets and Systems 289 (2016), 94-112.   DOI:10.1016/j.fss.2015.03.011
  9. S. Burris and H. P. Sankappanavar: A Course in Universal Algebra. Grauate Texts in Mathematics, 1981.   DOI:10.1007/978-1-4613-8130-3
  10. G. Czédli, M. Erné, B. Šešelja and A. Tepavčević: Characteristic triangles of closure operators with applications in general algebra. Algebra Univers. 62 (2009), 399-418.   DOI:10.1007/s00012-010-0059-2
  11. M. Demirci: Foundations of fuzzy functions and vague algebra based on many-valued equivalence relations. Part I: Fuzzy functions and their applications. Part II: Vague algebraic notions. Part III: Constructions of vague algebraic notions and vague arithmetic operations. Int. J. General Systems 32 (2003), 3, 123-155, 157-175, 177-201.   DOI:10.1080/0308107031000090765
  12. M. Demirci: A theory of vague lattices based on many-valued equivalence relations I: general representation results. Fuzzy Sets and Systems 151 (2005), 437-472.   DOI:10.1016/j.fss.2004.06.017
  13. M. Demirci: A theory of vague lattices based on many-valued equivalence relations II: Complete lattices. Fuzzy Sets and Systems 151 (2005), 473-489.   DOI:10.1016/j.fss.2004.06.004
  14. A. Di Nola and G. Gerla: Lattice valued algebras. Stochastica 11 (1987), 137-150.   CrossRef
  15. E. E. Edeghagba, B. Šešelja and A. Tepavčević: Omega-Lattices. Fuzzy Sets and Systems 311 (2017), 53-69.   DOI:10.1016/j.fss.2016.10.011
  16. M. P. Fourman and D. S. Scott: Sheaves and logic. In: Applications of Sheaves (M. P.\ Fourman, C. J. Mulvey and D. S. Scott, eds.), Lecture Notes in Mathematics, 753, Springer, Berlin, Heidelberg, New York 1979, pp. 302-401.   DOI:10.1007/bfb0061824
  17. J. A. Goguen: $L$-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174.   DOI:10.1016/0022-247x(67)90189-8
  18. S. Gottwald: Universes of fuzzy sets and axiomatizations of fuzzy set theory. Part II: Category theoretic approaches. Studia Logica 84 (2006) 1, 23-50, 1143-1174.   DOI:10.1007/s11225-006-9001-1
  19. U. Höhle: Quotients with respect to similarity relations. Fuzzy Sets and Systems 27 (1988), 31-44.   DOI:10.1016/0165-0114(88)90080-2
  20. U. Höhle: Fuzzy sets and sheaves. Part I: Basic concepts. Fuzzy Sets and Systems 158 (2007), 11, 1143-1174.   DOI:10.1016/j.fss.2006.12.009
  21. U. Höhle and A. P. Šostak: Axiomatic foundations of fixed-basis fuzzy topology. Springer US, 1999, pp. 123-272.   DOI:10.1007/978-1-4615-5079-2_5
  22. G. Klir and B. Yuan: Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey 1995.   CrossRef
  23. B. Šešelja and A. Tepavčević: On Generalizations of fuzzy algebras and congruences. Fuzzy Sets and Systems 65 (1994), 85-94.   DOI:10.1016/0165-0114(94)90249-6
  24. B. Šešelja and A. Tepavčević: Fuzzy identities. In: Proc. 2009 IEEE International Conference on Fuzzy Systems, pp. 1660-1664.   DOI:10.1109/fuzzy.2009.5277317