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The topic of the paper are Ω-algebras, where Ω is a complete lattice. In this research we
deal with congruences and homomorphisms. An Ω-algebra is a classical algebra which is not
assumed to satisfy particular identities and it is equipped with an Ω-valued equality instead of
the ordinary one. Identities are satisfied as lattice theoretic formulas. We introduce Ω-valued
congruences, corresponding quotient Ω-algebras and Ω-homomorphisms and we investigate con-
nections among these notions. We prove that there is an Ω-homomorphism from an Ω-algebra
to the corresponding quotient Ω-algebra. The kernel of an Ω-homomorphism is an Ω-valued
congruence. When dealing with cut structures, we prove that an Ω-homomorphism determines
classical homomorphisms among the corresponding quotient structures over cut subalgebras.
In addition, an Ω-congruence determines a closure system of classical congruences on cut sub-
algebras. Finally, identities are preserved under Ω-homomorphisms.
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1. INTRODUCTION

In this research we investigate some universal algebraic aspects of Ω-valued algebraic
structures, where Ω is a complete lattice.

Our research originates in fuzzy structures and in Ω-sets. As it is well known, the
fuzzy set theory was found in 1965. by L. Zadeh, and has become a highly developed
theory since then. Ω-sets, as an intention for modeling intuitionistic logic, appeared
1979, in the paper [16] by Fourman and Scott. An Ω-set is a nonempty set A equipped
with an Ω-valued equality E, with truth values in a complete Heyting algebra Ω. E is
a symmetric and transitive function from A2 to Ω. Ω-sets have been further applied to
non-classical predicate logics, and also to theoretical foundations of the fuzzy set theory
([18, 20]).

We use Ω-sets, but not strictly. In our approach Ω is a complete lattice (not nec-
essarily a Heyting algebra). The main reason for this membership values structure is
that it allows the use of cut-sets as a tool appearing in the fuzzy set theory. In this
setting, main algebraic and set-theoretic notions and their properties can be generalized
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from their classical origin to the lattice-valued framework ([22]). So we deal also with
lattice-valued structures, using an ordinary complete lattice.

Therefore, we combine the two approaches in a specific way: Ω-sets as basic objects,
and lattice-valued structures generalizing the notion of a subset, together with cut-sets
techniques as a bridge from functions to classical sets.

Lattice-valued structures were developed within the fuzzy set theory in which the unit
interval has been replaced by a complete lattice (firstly by Goguen [17]). This approach
is widely used for dealing with algebraic topics (see e. g., [14], then also [23]), and with
the lattice-valued topology (starting with [21] and many others). In the recent decades,
along with the development of the fuzzy logic, a complete lattice as a membership (truth
values) structure is often replaced by a complete residuated lattice (see e. g., [2]). But
then the cut structures do not keep algebraic properties satisfied on the basic fuzzy
structure.

A lattice-valued equality generalizing the classical one has been introduced in the
fuzzy mathematics by Höhle in [19], and then it was used in investigations of fuzzy
functions and fuzzy algebraic structures by many authors, in particular by Demirci
([11]), Bělohlávek and V. Vychodil ([3]) and others.

Identities for lattice-valued structures with a fuzzy equality were firstly investigated
in [3], see also book [4]. Identities as used here were introduced in [24], and then
developed in [5, 6, 7, 8]. In this framework, an identity holds if the corresponding
lattice-theoretic formula is fulfilled. What is new in this approach is that an identity
may hold on a lattice-valued algebra, while the underlying classical algebra does not
satisfy the analogue classical identity.

This paper is organized as follows. The preliminary section contains relevant notions
and their properties from the topics we use: lattice theory, universal algebra, lattice val-
ued functions and relations. There are also some notions about Ω-structures, published
previously. Section 3 contains the results of the paper. Some general notions con-
cerning Ω-structures are introduced: Ω-set-map and Ω-homomorphism, Ω-congruence,
kernel. . . Some of these notions, like an Ω-quotient structure are essentially different from
the classical counterpart. Starting with Ω-algebras, we prove that the natural Ω-set-map
is an Ω-homomorphism, and conversely, that the kernel of an Ω-homomorphism is an Ω-
congruence on the domain Ω-algebra. In addition, we prove that identities are preserved
under Ω-homomorphism. Finally, a representation theorem for an Ω-homomorphism
in terms of classical homomorphisms over the corresponding quotient cut structures is
proved.

There are essential differences among our approach and other known investigations
of lattice-valued algebraic structures, like [3, 11, 14] and others mentioned in refer-
ences. Namely, since Ω-algebras are based on Ω-sets, the classical equality is replaced
by a lattice-valued one, but with weakened reflexivity (in [3] and [11], reflexivity is
classical: E(x, x) = 1 for every x). Therefore, in our case all algebraic properties are
fulfilled on the lattice-valued domain, not necessarily on the crisp basic algebra. Next,
algebraic identities hold on Ω-algebras via particular lattice-valued formulas (in [3] iden-
tities are fulfilled up to some value, in other papers they hold in the classical way). As
a consequence (since Ω is a complete lattice), basic algebraic properties like identities,
connection of homomorphisms and congruences,. . . are preserved in the classical sense
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on quotients of cut-substructures over cuts of Ω-equality. E.g., an Ω-semigroup does not
necessarily fulfill the crisp associativity, an Ω-lattice may not possess an order in the
classical way, an Ω-homomorphism need not be a homomorphism of the basic structure.
Still, particular quotients constructed by cuts of the Ω-equality are classical semigroups,
in the case of Ω-lattices these quotients are lattice ordered, an Ω-homomorphism induces
a classical homomorphisms on the mentioned quotients etc. Finally, the closest approach
that we adopt here, the one by Höhle ([20]) differs from ours in some definitions (as in-
dicated throughout the text), due to our usage of a complete lattice, cut-structures and
weak reflexivity.

2. PRELIMINARIES

2.1. Lattices, algebras

A partially ordered set (Ω,6), where every subset M has both a meet
∧
M and a join∨

M is a complete lattice. A complete lattice possesses the least and the greatest
elements 0 and 1, respectively. A meet and a join of a two-element subset {a, b} of Ω
are binary operations, denoted by a ∧ b and a ∨ b, respectively.

A language (or a type) L is a set F of functional symbols, together with a set
of natural numbers (arities) associated to these symbols. An algebra of type L is a
structure A = (A,FA), where A is a nonempty set and FA is a set of (fundamental)
operations on A. An n-ary operation in FA corresponds to an n-ary symbol in the
language. A subalgebra of A is an algebra of the same type, defined on a subset
of A, closed under the operations in F . Terms in a language are regular expressions
constructed by the variables and operational symbols (see [9]). A term t(x1, . . . , xn)
in the language of an algebra A is here denoted in the same way as the corresponding
term-operation An → A. An identity in a language is a formula t1 ≈ t2, where t1, t2
are terms in the same language. An identity t1(x1, . . . , xn) ≈ t2(x1, . . . , xn) is said to
be valid on an algebra A = (A,FA), or is satisfied by A, if for all a1, . . . , an ∈ A,
the equality t1(a1, . . . , an) = t2(a1, . . . , an) holds. An equivalence relation ρ on A which
is compatible with all fundamental operations, meaning that xiρyi, i = 1, . . . , n implies
f(x1, . . . , xn)ρf(y1, . . . , yn), is a congruence relation on A. If ρ is a congruence on
A, then for a ∈ A, the congruence class of a, [a]ρ, and the quotient algebra A/ρ
are defined respectively by [a]ρ := {x ∈ A | (a, x) ∈ ρ}; A/ρ := (A/ρ, FA/ρ), where
A/ρ = {[a]ρ | a ∈ A}, and the operations in FA/ρ are defined by the representatives of
the congruence classes.

2.2. Ω-valued functions and relations

Throughout the paper, (Ω,∧,∨,6) is a complete lattice with the top and the bottom
elements 1 and 0 respectively.

An Ω-valued function µ on a nonempty set A is a mapping µ : A→ Ω.
For p ∈ L, a cut set or a p-cut of an Ω-valued function µ : A→ Ω is a subset µp of

A which is the inverse image of the principal filter in Ω, generated by p:

µp = µ−1(↑(p)) = {x ∈ X | µ(x) > p}.
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An Ω-valued (binary) relation R on A is an Ω-valued function on A2, i. e., it is
a mapping R : A2 → Ω.

R is symmetric if R(x, y) = R(y, x) for all x, y ∈ A; (1)

R is transitive if R(x, y) > R(x, z) ∧R(z, y) for all x, y, z ∈ A. (2)

An Ω-valued symmetric and transitive relation R on A fulfills ([20]):

R(x, y) 6 R(x, x) ∧R(y, y) (strictness) . (3)

Let µ : A→ Ω and R : A2 → Ω be an Ω-valued function and an Ω-valued relation on
A, respectively. Then we say that R is an Ω-valued relation on µ if for all x, y ∈ A

R(x, y) 6 µ(x) ∧ µ(y). (4)

An Ω-valued relation R on µ : A→ Ω is said to be reflexive on µ or µ-reflexive if

R(x, x) = µ(x) for every x ∈ A. (5)

A symmetric and transitive Ω-valued relation R on A, which is reflexive on µ : A→ Ω
is an Ω-valued equivalence on µ.

Clearly, an Ω-valued equivalence R on µ fulfills the strictness property (3).

For an algebra A = (A,FA), an Ω-valued function µ : A→ Ω is said to be compat-
ible over A if it fulfils the following: For any operation f from FA with arity greater
than 0, f : An → A,n ∈ N, for all a1, . . . , an ∈ A, and a constant c ∈ FA, we have

n∧
i=1

µ(ai) 6 µ(f(a1, . . . , an)), and µ(c) = 1. (6)

The following is known (see [8]).

Proposition 2.1. Let µ : A → Ω be a compatible function over an algebra A and let
t(x1, . . . , xn) be a term in the language of A. If a1, . . . , an ∈ A, then

n∧
i=1

µ(ai) 6 µ(t(a1, . . . , an)). (7)

Similarly, an Ω-valued relation R : A2 → Ω on an algebra A = (A,FA) is compatible
with the operations in F if the following hold: for every n-ary operation f ∈ FA, for all
a1, . . . , an, b1, . . . , bn ∈ A, and for every constant c ∈ FA

n∧
i=1

R(ai, bi) 6 R(f(a1, . . . , an), f(b1, . . . , bn)), and R(c, c) = 1. (8)

Proposition 2.2. Let R : A2 → Ω be a compatible Ω-valued relation on an algebra A
and let t(x1, . . . , xn) be a term in the language of A. If a1, . . . , an, b1, . . . , bn ∈ A, then

n∧
i=1

R(ai, bi) 6 R(t(a1, . . . , an), t(b1, . . . , bn)). (9)

�
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2.3. Ω-set

According to [16], an Ω-set is a pair (A,E), where A is a nonempty set, and E is a
symmetric and transitive Ω-valued relation on A. In this framework, E is said to be an
Ω-valued equality on A. This notation is used throughout the text.

Generalizing a notion of a subset, for an Ω-set (A,E), we denote by µE the Ω-valued
function on A, defined by

µE(x) := E(x, x). (10)

We say that µE is determined by E. Clearly, by the strictness property (3), E is an
Ω-valued relation on µE , namely, it is an Ω-valued equivalence on µE .

Lemma 2.3. If (A,E) is an Ω-set and p ∈ Ω, then the cut Ep is an equivalence relation
on the corresponding cut µEp of µE .

2.4. Ω-algebra; identities

Here we equip Ω-sets with algebraic structures and investigate them in the framework of
lattice-valued functions. Notions and claims in this section were presented and proved
in [8].

Let A = (A,FA) be an algebra and E : A2 → Ω an Ω-valued equality on A, which is
compatible with the operations in FA. Then we say ([8]) that (A, E) is an Ω-algebra.
Algebra A is the underlying algebra of (A, E).

Proposition 2.4. (Budimirović et al. [8]) Let (A, E) be an Ω-algebra. Then the
following hold:

(i) The function µE : A→ Ω determined by E, is compatible over A.

(ii) For every p ∈ Ω, the cut µEp of µE is a subalgebra of A.

(iii) For every p ∈ Ω, the cut Ep of E is a congruence relation on µEp .

Remark 2.5. Let us explain what we are generalizing by introducing Ω-algebras and
related notions. In the classical case, when Ω is a two-element chain, an Ω-set (A,E)
identifies a subset B of A such that E is an equivalence relation on B. Consequently, an
Ω-algebra (A, E) in this case determines a subalgebra B of A so that E is a congruence
relation on B (or a week congruence onA, see e. g., [10]). Clearly, the subset (subalgebra)
B is determined by the maximal diagonal sub-relation of E. We deal mostly with cases
in which neither the algebra A nor the subalgebra B possesses some algebraic property
(e. g., does not fulfill some identities), but the quotient structure B/E does.

In our generalization by which we combine Ω-sets and lattice-valued structures, a
subalgebra B becomes a compatible function µE , so that E is a compatible Ω-valued
equivalence on µE . Consequently, what we generalize here are classical algebraic notions
related not to algebras themselves, but to their quotient structures on subalgebras.

We shall use the following property of Ω-equalities (which is a direct consequence of
Proposition 2.2).
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Lemma 2.6. (Budimirović et al. [8]) Let (A, E) be an Ω-algebra and t(x1, . . . , xn)
a term in the language of the algebra A. Then for all a1, . . . , an, b1, . . . , bn ∈ A

n∧
i=1

E(ai, bi) 6 E(t(a1, . . . , an), t(b1, . . . , bn)).

Next we define how identities hold on Ω-algebras, according to the approach in [24].
Let and u(x1, . . . , xn) ≈ v(x1, . . . , xn) (briefly u ≈ v) be an identity in the type of

an Ω-algebra (A, E). We assume, as usual, that variables appearing in terms u and v
are from x1, . . . , xn. Then, (A, E) satisfies identity u ≈ v (i. e., this identity holds on
(A, E)) if for all a1, . . . , an ∈ A

n∧
i=1

µE(ai) 6 E(u(a1, . . . , an), v(a1, . . . , an)). (11)

If Ω-algebra (A, E) satisfies an identity, then this identity need not hold on A. On
the other hand, if the supporting algebra fulfills an identity then also the corresponding
Ω-algebra does (see [8]).

Theorem 2.7. (Budimirović et al. [8]) Let (A, E) be an Ω-algebra, and F a set of
identities in the language of A. Then, (A, E) satisfies all identities in F if and only if
for every p ∈ L the quotient algebra µEp /Ep satisfies the same identities.

3. RESULTS: Ω-SET-MAPS, CONGRUENCES AND HOMOMORPHISMS

3.1. Ω-subset; Ω-set-map

Let (A,E) be an Ω-set, and E1 : A2 → Ω a symmetric and transitive Ω-relation on A
fulfilling E1 6 E, so that the following holds: for all x, y ∈ A

E1(x, y) = E(x, y) ∧ E1(x, x) ∧ E1(y, y). (12)

Obviously, (A,E1) is an Ω-set and we say that it is an Ω-subset of (A,E).

Remark 3.1. A straightforward generalization of a subset to an Ω-subset (as it is done
in [16] and generally in category theory) would be to take B ⊆ A, and a restriction E|B
of E to B. However, originating in fuzzy framework, we consider E to be an Ω-relation
on a function µE determined by the diagonal of E, which generalizes a characteristic
function; in this terminology µE is already a fuzzy subset and E is an Ω-equivalence on it.
Consequently, formula (12) does define a restriction of E to a fuzzy subset µE1 : A→ Ω,
µE1(x) := E1(x, x). Needless to say, a classical restriction of E to a subset B of A also
fulfils condition (12), as it is in formula (16) in the sequel.

Let (M,E) and (N,G) be two Ω-sets. Then a mapping ϕ : M → N, such that for all
a, b ∈M

E(a, b) 6 G(ϕ(a), ϕ(b)), and (13)
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µE(a) = µG(ϕ(a)) i. e., E(a, a) = G(ϕ(a), ϕ(a)) (14)

is called an Ω-set-morphism, or an Ω-set-map. Symbolically, we denote an Ω-set-map
as ϕ : (M,E)→ (N,G).

The following is straightforward.

Lemma 3.2. If ϕ is a bijection from M to N , then the inverse function ϕ−1 : N →M
is an Ω-set-map from (N,G) to (M,E) if and only if

E(a, b) = G(ϕ(a), ϕ(b)). (15)

An Ω-set-map ϕ : (M,E) → (N,G) is injective or surjective if ϕ : M → N fulfils
the same property in the classical sense. Due to Lemma 3.2, we define an Ω-set-map
ϕ : (M,E)→ (N,G) to be an Ω-bijection if it is injective and surjective and fulfils the
property (15).

Let ϕ : (M,E)→ (N,G) be an Ω-set-map. Let ϕE : N ×N → Ω be defined by

ϕE(u, v) :=
{
G(u, v) if u, v ∈ ϕ(M)

0 otherwise. (16)

The following is straightforward.

Lemma 3.3. If ϕ : (M,E) → (N,G) is an Ω-set-map, then (N,ϕE) is an Ω-subset of
(N,G).

Analogously to the classical case we define the kernel of an Ω-set-map.
Let ϕ be an Ω-set-map from (M,E) to (N,G). Then a binary Ω-valued relation

kerΩϕ : M2 → Ω given by

kerΩϕ(a, b) = G(ϕ(a), ϕ(b)), for all a, b ∈M, (17)

is called an Ω-valued kernel of ϕ. To simplify notation, we denote kerΩϕ by Kϕ. Ob-
viously, the kernel Kϕ of an Ω-set-map ϕ : (M,E)→ (N,G) is an Ω-valued equivalence
relation on µE ; namely, it is a µE-reflexive, symmetric and transitive Ω-valued relation
on M .

Proposition 3.4. Let (M,E) and (N,G) be Ω-sets, ϕ : M → N a function and Kϕ :
M2 → Ω defined by

Kϕ(a, b) = G(ϕ(a), ϕ(b)).

Then ϕ is an Ω-set-map from (M,E) to (N,G) if and only if for all a, b ∈M , E(a, b) 6
Kϕ(a, b) and E(a, a) = Kϕ(a, a).

P r o o f . Assuming E(a, b) 6 Kϕ(a, b) for all a, b ∈M , we have

E(a, b) 6 Kϕ(a, b) = G(ϕ(a), ϕ(b)), hence E(a, b) 6 G(ϕ(a), ϕ(b)).

In addition,
G(ϕ(a), ϕ(a)) = Kϕ(a, a) = E(a, a),



Congruences and homomorphisms on Ω-algebras 899

and ϕ is an Ω-set-map from (M,E) to (N,G).
On the other hand, if ϕ is an Ω-set-map from (M,E) to (N,G), then for all a, b ∈M
E(a, b) 6 E(a, a)∧E(b, b) and E(a, b) 6 G(ϕ(a), ϕ(b)) hence E(a, b) 6 Kϕ(a, b); fur-

ther, by (14) it is straightforward that also E(a, a) = Kϕ(a, a) holds and the conditions
required by the proposition are fulfilled. �

3.2. Ω-algebra and Ω-subalgebra

Let (A, E) be an Ω-algebra, and (A,E1) an Ω-subset of (A,E). By (12), E1 is a sym-
metric and transitive Ω-relation on A, fulfilling for all x, y ∈ A

E1(x, y) = E(x, y) ∧ E1(x, x) ∧ E1(y, y).

Let also E1 be compatible with the operations in A. Obviously, (A, E1) is an Ω-algebra
and we say that it is an Ω-subalgebra of (A, E).

The following is obvious.

Proposition 3.5. If (A, E1) is an Ω-subalgebra of an Ω-algebra (A, E), and µ1 : A→ Ω
is the Ω-valued function on A defined by µ1(x) := E1(x, x), then µ1 is compatible over
A, i. e., it fulfills (6).

An Ω-subalgebra (A, E1) of (A, E) fulfills all the identities that the latter does, as
follows.

Theorem 3.6. Let (A, E1) be an Ω-subalgebra of an Ω-algebra (A, E). If (A, E) satis-
fies the set Σ of identities, then also (A, E1) satisfies all the identities in Σ.

P r o o f . Let u ≈ v be an identity from Σ, with variables x1, . . . , xn. Then, since u ≈ v
holds in (A, E), by the definition of E1 and the fact that it is compatible with operations
on A, by the definition of µ1, and by Proposition 2.1, for all a1, . . . , an ∈ A, we have

n∧
i=1

µ1(ai) =
n∧
i=1

E1(ai, ai)

=
n∧
i=1

E(ai, ai) ∧
n∧
i=1

E1(ai, ai) =
n∧
i=1

µE(ai) ∧
n∧
i=1

E1(ai, ai)

6 E(u(a1, . . . , an), v(a1, . . . , an)) ∧
n∧
i=1

E1(ai, ai)

= E(u(a1, . . . , an), v(a1, . . . , an)) ∧
n∧
i=1

µ1(ai)

6 E(u(a1, . . . , an), v(a1, . . . , an)) ∧ µ1(u(a1, . . . , an)) ∧ µ1(v(a1, . . . , an))
= E(u(a1, . . . , an), v(a1, . . . , an)) ∧ E1(u(a1, . . . , an), u(a1, . . . , an))
∧ E1(v(a1, . . . , an), v(a1, . . . , an))
= E1(u(a1, . . . , an), v(a1, . . . , an)).

�
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3.3. Ω-valued congruences and homomorphism

Let M = (M,FM ) be an algebra and M = (M, E) a corresponding Ω-algebra. An
Ω-valued congruence onM is an Ω-valued equivalence Θ on µE , compatible with the
operations in M in the sense of (8), satisfying also for all x, y ∈M

E(x, y) 6 Θ(x, y). (18)

Obviously, E is also a congruence on M, the smallest one with respect to compo-
nentwise order (18). Observe also that by the definition of a congruence Θ, for every
x ∈M ,

Θ(x, x) = E(x, x) = µE(x).

For an element a ∈ M , the a-block (block) of an Ω-congruence Θ on M is a mapping
Θ[a] : M → Ω, such that for x ∈ M , Θ[a](x) := Θ(a, x). The collection of all blocks,
the quotient set of M over Θ, is denoted by M/Θ. Operations on M/Θ are defined as
induced by the operations on M: for an n-ary operation f ,

f(Θ[a1], . . . ,Θ[an]) := Θ[f(a1, . . . , an)]. (19)

Remark 3.7. Observe that these blocks are functions and they can be equal. In our
approach, we consider them to be different, since each of these functions is denoted
(indexed) by the element to which it is associated: Θ[a] is a function denoted by a, and
suppose that for b ∈M , b 6= a, Θ[a](x) = Θ[b](x) , for all x ∈M . In our approach these
functions are denoted by different elements (a and b), hence they are distinct elements
(blocks, functions) in M/Θ.

By the above definition of operations, it is clear thatM/Θ = (M/Θ, F ) is an algebra
isomorphic with M under Θ[x] 7→ x. It can be endowed with an Ω-valued equality EΘ

as follows:
EΘ(Θ[a],Θ[b]) := Θ(a, b).

Then M/Θ = (M/Θ, EΘ) is an Ω-algebra, the quotient Ω-algebra of M , where

µ/Θ :M/Θ→ Ω is defined by µ/Θ(Θ[x]) := EΘ(Θ[x],Θ[x]). (20)

Obviously, for every x ∈M , µ/Θ(Θ[x]) = µE(x).

Let M = (M,FM ) and N = (N,FN ) be two algebras of the same type, and M =
(M, E), N = (N , G) two corresponding Ω-algebras. An Ω-set-map ϕ : (M,E)→ (N,G)
is said to be an Ω-homomorphism fromM to N if for all a, a1, . . . , an ∈M , for every
constant c ∈ M and the corresponding constant c1 ∈ N , and for every n-ary function
f ∈ FM , the following conditions hold:

µE(a1) ∧ · · · ∧ µE(an) 6 G(ϕ(f(a1, . . . , an)), f(ϕ(a1), . . . , ϕ(an))); (21)
µE(c) 6 G(ϕ(c), c1). (22)
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Observe that an Ω-homomorphism need not be a homomorphism of the underlying
algebras, see Example 2.

As usual, an injective Ω-homomorphism is an Ω-monomorphism, and an Ω-epimor-
phism is a surjective Ω-homomorphism. Finally, an Ω-isomorphism ϕ is an Ω-
homomorphism which is an Ω-bijection, i. e., it fulfils also (15).

The next lemma describes the extension of Ω-homomorphisms to terms.

Lemma 3.8. Let u be an n-ary term over the set {x1, . . . , xn} of variables, in the lan-
guage of algebrasM = (M, E) and N = (N , G). If ϕ : M → N is an Ω-homomorphism,
then for all a1, . . . , an ∈M

n∧
i=1

µE(ai) 6 G(ϕ(u(a1, . . . , an)), u(ϕ(a1), . . . , ϕ(an))).

P r o o f . We give a proof by induction on the complexity, i. e., on the number of occur-
rences of n-ary operation symbols, length of u, denoted by l(u). If l(u) = 1, then u = f ,
for a fundamental function symbol f , and hence the statement is true by the definition
of an Ω-homomorphism.

Inductively, assume that l(u) > 1 and that for every term v, l(v) < l(u) the assump-
tion holds. Then,

u(x1, . . . , xn) = f(u1(x1, . . . , xn), . . . , un(x1, . . . , xn))

and since l(ui) < l(u), for i ∈ {1, . . . , n} we have that
n∧
i=1

µE(ai) 6 G(ϕ(ui(a1, . . . , an)), ui(ϕ(a1), . . . , ϕ(an))), and

n∧
i=1

µE(ai) 6
n∧
i=1

G(ϕ(ui(a1, . . . , an)), ui(ϕ(a1), . . . , ϕ(an)))

6 G(f(ϕ(u1(a1, . . . , an)), . . . , ϕ(un(a1, . . . , an))),
f(u1(ϕ(a1), . . . , ϕ(an)), . . . , un(ϕ(a1), . . . , ϕ(an))).

In addition,
n∧
i=1

µE(ai) 6
n∧
i=1

µE(ui(a1, . . . , an))

6 G(ϕ(f(u1(a1, . . . , an), . . . , un(a1, . . . , an))), f(ϕ(u1(a1, . . . , an) . . . , ϕ(un(a1, . . . , an)))).

Therefore by transitivity,
n∧
i=1

µE(ai)

6 G(ϕ(f(u1(a1, . . . , an), . . . , un(a1, . . . , an))),

f(u1(ϕ(a1), . . . , ϕ(an)), . . . , un(ϕ(a1), . . . , ϕ(an))))

= G(ϕ(u(a1, . . . , an)), u(ϕ(a1), . . . , ϕ(an))).

This completes the proof. �
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Theorem 3.9. LetM = (M, E), N = (N , G) be two Ω-algebras and ϕ an Ω-homomor-
phism from M to N . Then the Ω-valued kernel of ϕ, Kϕ, as defined by (17), is an
Ω-valued congruence on M.

P r o o f . Clearly, Kϕ is an Ω-valued equivalence relation on µE . Hence we have to show
that Kϕ is compatible with every function f ∈ FM . Let (a1, b1), . . . , (an, bn) ∈M2 and
f ∈ FM an n-ary function. Then

Kϕ(a1, b1) ∧ · · · ∧Kϕ(an, bn)
= G(ϕ(a1), ϕ(b1)) ∧ · · · ∧G(ϕ(an), ϕ(bn))
= (G(ϕ(a1), ϕ(b1)) ∧ µE(a1) ∧ µE(b1)) ∧ · · · ∧ (G(ϕ(an), ϕ(bn)) ∧ µE(an) ∧ µE(bn))
= (G(ϕ(a1), ϕ(b1)) ∧ · · · ∧G(ϕ(an), ϕ(bn))) ∧ µE(a1) ∧ · · · ∧ µE(an)
∧ µE(b1) ∧ · · · ∧ µE(bn)
6 G(f(ϕ(a1) . . . ϕ(an)), f(ϕ(b1) . . . ϕ(bn)))
∧ G(ϕ(f(a1, . . . , an), f(ϕ(a1), . . . , ϕ(an))
∧ G(ϕ(f(b1, . . . , bn), f(ϕ(b1), . . . , ϕ(bn)) ∧ µE(f(a1, . . . , an)) ∧ µE(f(b1, . . . , bn))
6 G(ϕ(f(a1, . . . , an)), ϕ(f(b1, . . . , bn))) ∧ µE(f(a1, . . . , an)) ∧ µE(f(b1, . . . , bn))
= Kϕ(f(a1, . . . , an), f(b1, . . . , bn)).

Hence Kϕ is an Ω-valued congruence relation on M. �

Theorem 3.10. Let Θ be an Ω-valued congruence on an Ω-algebraM = (M, E). Then
the mapping ϕ : M → M/Θ, given by ϕ(x) = Θ[x] is an Ω-homomorphism from M to
M/Θ.

P r o o f . ϕ is an Ω-set-map from (M, E) to (M/Θ, EΘ), since EΘ(Θ[x],Θ[y]) = Θ(x, y),
and E 6 Θ. In addition, for a ∈M

E(a, a) = Θ(a, a) = EΘ(Θ[a],Θ[a]) = EΘ(ϕ(a), ϕ(a)).

Properties (21) and (22) also hold: for a, a1, . . . , an ∈ M , and an n-ary operational
symbol f from the language,

µE(a1) ∧ · · · ∧ µE(an) = E(a1, a1) ∧ · · · ∧ E(an, an)
= Θ(a1, a1) ∧ · · · ∧Θ(an, an)
= EΘ(Θ[a1],Θ[a1]) ∧ · · · ∧ EΘ(Θ[an],Θ[an])
= Θ(ϕ(a1), ϕ(a1)) ∧ · · · ∧Θ(ϕ(an), ϕ(an))
6 Θ(f(ϕ(a1), . . . , ϕ(an)), f(ϕ(a1), . . . , ϕ(an)))
= Θ(ϕ(f(a1, . . . , an)), f(ϕ(a1), . . . , ϕ(an))),

by the definition (19) of operations on classes. If c is a constant in M, then ϕ(c) =
Θ[c] = 1, hence

EΘ(ϕ(Θ[c]),Θ[c]) = Θ(c, c) = 1 = µE(c) = E(c, c),

and (22) holds. �
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Theorem 3.11. Let Θ be an Ω-valued equivalence on an Ω-algebraM = (M, E). Then
Θ is an Ω-valued congruence on M if and only if for every p ∈ Ω such that µEp 6= ∅, the
mapping φp : µEp → µEp /Θp given by φp(x) = [x]Θp

, is a classical homomorphism.

P r o o f . Let p ∈ Ω and suppose µEp 6= ∅. Then clearly, φp is a well defined function. It
is a homomorphism: Let f be an n-ary fundamental operation in the language of M.
Then for a1, . . . , an ∈ µEp ,

φp(f(a1, . . . , an)) = [f(a1, . . . , an)]Θp
= f([a1]Θp

, . . . , [a1]Θp

= f(φp(a1), . . . , φp(an)),

since µEp /Θp is a quotient structure.
The converse holds by the same sequence of equalities, with the assumption that φp

is a homomorphism. �
As it is known in the classical case, if h : M → N is a homomorphism from M to

N , then h(M) is the underlying set of the homomorphic image of M under h, which
of course is a subalgebra of N . Analogously, a homomorphic image of an Ω-algebra M
with respect to ϕ is, under an additional condition, an Ω-subalgebra of N .

Therefore, in the following (proposition and two theorems), we assume that Ω-
homomorphism ϕ from M to N fulfills the following property. If f is an n-ary fun-
damental operation on the underlying algebra in N , then

f(ϕ(a1), . . . , ϕ(an)) ∈ ϕ(M). (23)

Proposition 3.12. Let M = (M, E), N = (N , G) be two Ω-algebras and ϕ an Ω-
homomorphism from M to N . Then, ϕ(M) = (N , ϕE) is an Ω-subalgebra of N .

P r o o f . By Lemma 3.3, (N,ϕE) is an Ω-subset of (N,G). By (23), ϕ(M) is a classical
subalgebra of N . In addition, ϕE is compatible with the operations in N ; if f is an
n-ary operation on N , then for x1, . . . , xn; y1, . . . , yn ∈ N , we have either

a) some of these elements are not images under ϕ,

b) all of them belong to ϕ(M).

In case a), ϕE(x1, y1) ∧ . . . ∧ ϕE(xn, yn) = 0, and compatibility holds trivially; in
case b), we have that by (23), ϕ(M) is a classical subalgebra of N , hence

ϕE(x1, y1) ∧ . . . ∧ ϕE(xn, yn) = G(x1, y1) ∧ . . . ∧G(xn, yn)
6 G(f(x1, . . . , xn), f(y1, . . . , yn)) = ϕE(f(x1, . . . , xn), f(y1, . . . , yn)).

�

Theorem 3.13. Let (M, E), (N , G) be Ω-valued algebras of the same type such that
ϕ :M→ N is an Ω-homomorphism and (N , ϕE) an Ω-homomorphic image of (M, E)
under ϕ. If (M, E) fulfills identity u(x1, . . . , xn) ≈ v(x1, . . . , xn), then also (N , ϕE)
satisfies the same identity.
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P r o o f . We show that for a1, . . . , an ∈M ,

n∧
i=1

µG(ϕ(ai)) 6 ϕE(u(ϕ(a1), . . . , ϕ(an)), v(ϕ(a1), . . . , ϕ(an)).

Since the identity u(x1, . . . , xn) ≈ v(x1, . . . , xn) holds in (M, E), we have

n∧
i=1

µE(ai) 6 E(u(a1, . . . , an), v(a1, . . . , an))

6 G(ϕ(u(a1, . . . , an)), ϕ(v(a1, . . . , an))),

thus
n∧
i=1

µE(ai) 6 G(ϕ(u(a1, . . . , an)), ϕ(v(a1, . . . , an))). (24)

By Lemma 3.8 it follows that

n∧
i=1

µE(ai) 6 G(ϕ(u(a1, . . . , an)), u(ϕ(a1), . . . , ϕ(an))) (25)

and
n∧
i=1

µE(ai) 6 G(ϕ(v(a1, . . . , an)), v(ϕ(a1), . . . , ϕ(an))). (26)

Hence by equations (24), (25) and (26) we have

n∧
i=1

µE(ai) 6 G(ϕ(u(a1, . . . , an)), u(ϕ(a1), . . . , ϕ(an)))

∧ G(ϕ(v(a1, . . . , an)), v(ϕ(a1), . . . , ϕ(an)))
∧ G(ϕ(u(a1, . . . , an)), ϕ(v(a1, . . . , an)))
6 G(u(ϕ(a1), . . . , ϕ(an)), ϕ(v(a1, . . . , an)))
∧ G(ϕ(v(a1, . . . , an)), v(ϕ(a1), . . . , ϕ(an)))
6 G(u(ϕ(a1), . . . , ϕ(an)), v(ϕ(a1), . . . , ϕ(an))).

Further, by the definition of an Ω-homomorphism,
∧n
i=1 µ

E(ai) =
∧n
i=1 µ

G(ϕ(ai)). Thus

n∧
i=1

µG(ϕ(ai)) 6 G(u(ϕ(a1), . . . , ϕ(an)), v(ϕ(a1), . . . , ϕ(an))).

Hence by Theorem 3.6 and Proposition 3.12,

n∧
i=1

µG(ϕ(ai)) 6 ϕE(u(ϕ(a1), . . . , ϕ(an)), v(ϕ(a1), . . . , ϕ(an))).

�
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Theorem 3.14. Let M = (M, E), N = (N , G) be two Ω-algebras, ϕ an Ω-homomor-
phism from M to N , and Kϕ the Ω-valued kernel of ϕ, as defined by (17). Let also
ϕ(M) = (N , ϕE) be the Ω-subalgebra of N = (N , G), determined by ϕ. Then, the map
ψ : M/Kϕ → N , given by ψ(Kϕ[x]) := ϕ(x) is an Ω-homomorphism from M/Kϕ onto
ϕ(M).

P r o o f . The map ψ is an Ω-set-function:

Eµ
E/Kϕ

(Kϕ[a],Kϕ[b]) = Kϕ(a, b) 6 G(ϕ(a), ϕ(b)) = G(ψ(Kϕ[a]), ψ(Kϕ[b])),

by (17), and (µE/Kϕ)([a]) = Eµ
E/Kϕ

(Kϕ[a],Kϕ[a])=Kϕ(a, a) = G(ϕ(a), ϕ(a))∧µE(a)
= µG(ϕ(a)) = µG(ψ(Kϕ[a]), by the definitions of an Ω-kernel, and of the function ψ. It
is an Ω-homomorphism:

n∧
i=1

(µE/Kϕ)([ai]) =
n∧
i=1

Kϕ(ai, ai) =
n∧
i=1

µE(ai)

6 G(ϕ(f(a1, . . . , an)), f(ϕ(a1), . . . , ϕ(an)))
= G(ψ(Kϕ[f(a1, . . . , an)]), f(ψ(Kϕ[a1]), . . . , ψ(Kϕ[an]))),

since ϕ is an Ω-homomorphism. �

Remark 3.15. Let us mention that Theorem 3.12 shows that the quotient Ω-algebra
over an Ω-congruence turns out to be essentially different from the classical quotient
algebra. As indicated in Remark 3.7, equal block (functions) need not be compatible
under operations, hence they are treated as different objects, denoted by elements of
the underlying algebra. Therefore, in the case of an Ω-homomorphism, the quotient
Ω-structure with respect to the kernel is not isomorphic with the image subalgebra, as
in the classical case.

Theorem 3.16. An Ω-set-map ϕ : M → N from an Ω-algebra (M, E) to an Ω-algebra
(N , G) of the same type is an Ω-homomorphism, if and only if for every p ∈ Ω, the map-
ping ϕ : µEp /Ep → µGp /Gp, such that ϕ([x]Ep

) := [ϕ(x)]Gp
is a classical homomorphism.

P r o o f . Assume that ϕ is an Ω-homomorphism. Then for a1 . . . , an ∈ µEp we have

G(ϕ(f(a1, . . . , an)), f(ϕ(a1), . . . , ϕ(an))) > µE(a1)∧, . . . ,∧µE(an) > p,

implying
(ϕ(f(a1, . . . , an)), f(ϕ(a1), . . . , ϕ(an))) ∈ Gp.

Hence, for an n-ary fundamental operation f ,

f(ϕ([a1]Ep), . . . , ϕ([an]Ep)) = f([ϕ(a1)]Gp , . . . , [ϕ(an)]Gp)
= [f(ϕ(a1), . . . , ϕ(an))]Gp = [ϕ(f(a1, . . . , an))]Gp

= ϕ([f(a1, . . . , an)]Ep) = ϕ(f([a1]Ep , . . . , [an]Ep)).
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Therefore, the mapping ϕ is a homomorphism.
For the converse, assume that for every p ∈ Ω, ϕ is a homomorphism and let

a1 . . . , an ∈ M such that µE(a1) ∧ . . . ∧ µE(an) = q, hence a1 . . . , an ∈ µEq . Now,
since ϕ is a homomorphism, we have

ϕ(f([a1]Eq , . . . , [an]Eq )) = f(ϕ([a1]Eq ), . . . , ϕ([an]Eq )),

implying

[ϕ(f(a1, . . . , an))]Gq
= f([ϕ(a1)]Gq

, . . . , [ϕ(an)]Gq
) = [f(ϕ(a1), . . . , ϕ(an))]Gq

.

Hence,

G(ϕ(f(a1, . . . , an)), f(ϕ(a1), . . . , ϕ(an))) > q = µE(a1) ∧ . . . ∧ µE(an).

Therefore, the mapping ϕ is an Ω-homomorphism. This completes the proof. �

The following example illustrates the definition of an Ω-congruence on an Ω-groupoid,
the corresponding quotient Ω-groupoid, Theorems 3.10 and 3.11.

Example 3.17. Let G = ({a, b, c, d, e}, ∗) be a groupoid given by Table 1 and let Ω
be a four element Boolean lattice Ω = {0, p, q, 1}, Figure 1. An Ω-groupoid is G =
(G, E), where the Ω-valued equality E is presented in Table 2. In Table 3, an Ω-valued
congruence Θ on G is given.

∗ a b c d e
a a c b a d
b b b c b c
c b c b c b
d d c b c d
e e c b d d

u
�
�

�
�
@
@
@
@�

�
�
�
@
@

@
@

u u
u
0

1

p q

Tab. 1. Fig. 1.

E a b c d e
a p 0 0 0 0
b 0 1 p 0 0
c 0 p 1 0 0
d 0 0 0 q q
e 0 0 0 q q

Θ a b c d e
a p 0 0 0 0
b 0 1 1 q q
c 0 1 1 q q
d 0 q q q q
e 0 q q q q

Tab. 2. Tab. 3.

The quotient Ω-groupoid is (G/Θ, EΘ), where

G/Θ = {Θ[a],Θ[b],Θ[c],Θ[d],Θ[e]}, and
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Θ[a] =
(
a b c d e
p 0 0 0 0

)
; Θ[b] =

(
a b c d e
0 1 1 q q

)
; Θ[c] =

(
a b c d e
0 1 1 q q

)
;

Θ[d] =
(
a b c d e
0 q q q q

)
; Θ[e] =

(
a b c d e
0 q q q q

)
.

The operation in this groupoid is presented in Table 4, and the Ω-valued equality in
Table 5.

∗ Θ[a] Θ[b] Θ[c] Θ[d] Θ[e]
Θ[a] Θ[a] Θ[c] Θ[b] Θ[a] Θ[d]
Θ[b] Θ[b] Θ[b] Θ[c] Θ[b] Θ[c]
Θ[c] Θ[b] Θ[c] Θ[b] Θ[c] Θ[b]
Θ[d] Θ[d] Θ[c] Θ[b] Θ[c] Θ[d]
Θ[e] Θ[e] Θ[c] Θ[b] Θ[d] Θ[d]

Tab. 4.

EΘ Θ[a] Θ[b] Θ[c] Θ[d] Θ[e]
Θ[a] p 0 0 0 0
Θ[b] 0 1 1 q q
Θ[c] 0 1 1 q q
Θ[d] 0 q q q q
Θ[e] 0 q q q q

.

Tab. 5.

It is easy to check that the mapping x 7→ Θ[x] is an Ω-homomorphism from (G, E) to
(G/Θ, EΘ) (Theorem 3.10). To illustrate Theorem 3.11, we take a subgroupoid µEp =
{a, b, c}; observe that µE(x) = E(x, x), µEp = {x ∈ G | µE(x) > p}) and the cut Θp of
Θ is given in Table 6:

Θp a b c
a 1 0 0
b 0 1 1
c 0 1 1

.

Tab. 6.

Θp is a congruence on µEp , and the map x 7→ [x]Θp is a classical natural homomorphism
from µEp onto the quotient groupoid µEp /Θp = {{a}, {b, c}}. The same holds for all other
corresponding cuts of µE and Θ.

Next, we present an example of an Ω-homomorphism which is not a classical homo-
morphism on the underlying groupoids. It also shows the ways identities are preserved
in Ω-structures and under Ω-homomorphism (Theorems 3.13 and 3.16).

Example 3.18. Here we have two Ω-groupoids, ({a, b, c, d}, E1) and ({e, f, g}, E2), for
which the corresponding operations and Ω-equalities are given by Tables 7, 8, 9 and 10.
The lattice Ω is the one in Figure 1 (Example 1).
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· a b c d
a a b c d
b a b d b
c c d c c
d d b d d

· e f g
e e e g
f f f f
g g f g

Tab. 7. Tab. 8.

E1 a b c d
a p 0 p 0
b 0 q 0 q
c p 0 p 0
d 0 q 0 q

E2 e f g
e p 0 p
f 0 q q
g p q 1

Tab. 9. Tab. 10.

The underlying groupoids are evidently not commutative, while the omega ones, ({a, b, c, d}, E1)
and ({e, f, g}, E2) are, i. e., they fulfill the lattice formula (11) which in this case has the
following form:

µi(x) ∧ µi(y) 6 Ei(x · y, y · x), i ∈ {1, 2}.

This condition can be easily checked from the above tables, where

µi(x) = Ei(x, x), and µ1 =
(
a b c d
p q p q

)
; µ2 =

(
e f g
p q 1

)
.

E.g., µ1(a) ∧ µ1(b) = p ∧ q = 0 6 E1(a · b, b · a) = E1(b, a) = 0, and so on.
Let ϕ be the function {a, b, c, d} → {e, f, g}, given by

ϕ =
(
a b c d
e f e f

)
.

It is easy to check that ϕ is not a homomorphism among these crisp groupoids, e. g.,
ϕ(a · b) = ϕ(b) = f , but ϕ(a) · ϕ(b) = e · f = e. However, it is an Ω-homomorphism
from ({a, b, c, d}, E1) to ({e, f, g}, E2), i. e., conditions (13), (14), (21) and (22) are
satisfied. In addition, the homomorphic image under this Ω-homomorphism, Ω-groupoid
({e, f, g}, E2) is also commutative, it satisfies the same lattice-valued formula as the
first Ω-groupoid (Theorem 3.13). Finally Theorem 3.16 is also illustrated, i. e., there
are classical homomorphisms from quotient cut-structures of the first groupoid into the
other e. g., from (µ1)p/(E1)p onto (µ2)p/(E2)p.

4. CONCLUSION

The paper deals with homomorphisms and congruences in the field of Ω-algebras. We
have presented the basic notions in this field from the universal algebraic aspect. It
turned out that several properties are different from the classical theory, concerning
e. g., quotient structures, homomorphic images etc. Still, the link between the classical
homomorphisms, kernels and natural maps exists in the field of cut structures, namely
their quotients over the cuts of the Ω-equalities.
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Our next task is to investigate further topics in this framework, namely homomor-
phism and isomorphism theorems, in particular for known classes of algebras like groups,
rings etc. Further, it is known that in classical algebra collections of subalgebras or con-
gruences form algebraic lattices under inclusion. Is it the case also for collections of
Ω-congruences and Ω-subalgebras under the componentwise order of functions? Finally,
principal congruences, generated by pairs (a, b), a, b belonging to the underlying alge-
bra, determine important substructures of these algebras. Their role in the framework
of Ω-algebras should be investigated.
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[24] B. Šešelja and A. Tepavčević: Fuzzy identities. In: Proc. 2009 IEEE International Con-
ference on Fuzzy Systems, pp. 1660–1664. DOI:10.1109/fuzzy.2009.5277317

Elijah Eghosa Edeghagba, University of Novi Sad, Faculty of Sciences, Department of
Mathematics and Informatics, Trg D. Obradovića 4, 21000 Novi Sad. Serbia and
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Branimir Šešelja, University of Novi Sad, Faculty of Sciences, Department of Mathe-
matics and Informatics, Trg D. Obradovića 4, 21000 Novi Sad. Serbia.
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