Kybernetika 53 no. 5, 853-867, 2017

Stabilization of nonlinear systems with varying parameter by a control Lyapunov function

Wajdi Kallel and Thouraya KharratDOI: 10.14736/kyb-2017-5-0853

Abstract:

In this paper, we provide an explicit homogeneous feedback control with the requirement that a control Lyapunov function exists for affine in control systems with bounded parameter that satisfies an homogeneous condition. We use a modified version of the Sontag's formula to achieve our main goal. Moreover, we prove that the existence of an homogeneous control Lyapunov function for an homogeneous system leads to an homogeneous closed-loop system which is asymptotically stable by an homogeneous feedback control. In addition, we study the finite time stability for affine in control systems with varying parameter.

Keywords:

Lyapunov function, feedback stabilization, nonlinear control systems, homogeneous system, finite time stability

Classification:

93D05, 93D15

References:

  1. Z. Artstein: Stabilization with relaxed controls. Nonlinear Anal. TMA 7 (1983), 1163-1173.   DOI:10.1016/0362-546x(83)90049-4
  2. S. P. Bhat and D. S. Bernstein: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Automat. Control 43 (1998), 678-682.   DOI:10.1109/9.668834
  3. X. S. Cai, Z. Z. Han and W. Zhang: Simultaneous stabilization for a collection of multi-input nonlinear systems with uncertain parameters. Acta Automat. Sinica 35 (2009), 206-209.   DOI:10.3724/sp.j.1004.2009.00206
  4. S. Čelikovský and E. Aranda-Bricaire: Constructive nonsmooth stabilization of triangular systems. Systems Control Lett. 36 (1999), 21-37.   DOI:10.1016/s0167-6911(98)00062-0
  5. J. Huang, L. Yu and S. Xia: Stabilization and finite time stabilization of nonlinear differential inclusions based on control Lyapunov function. Circuits Systems Signal Process. 33 (2015), 2319-2331.   DOI:10.1007/s00034-014-9741-5
  6. Y. Hong, J. Wang and D. Cheng: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Automat. Control 51 (2006), 858-862.   DOI:10.1109/tac.2006.875006
  7. H. Jerbi: A manifold-like characterization of asymptotic stabilizability of homogeneous systems. Systems Control Lett. 41 (2002), 173-178.   DOI:10.1016/s0167-6911(01)00172-4
  8. H. Jerbi, W. Kallel and T. Kharrat: On the stabilization of homogeneous perturbed systems. J. Dynamical Control Syst. 14 (2008), 595-606.   DOI:10.1007/s10883-008-9053-9
  9. H. Jerbi and T. Kharrat: Only a level set of a control Lyapunov function for homogeneous systems. Kybernetika 41 (2005), 593-600.   CrossRef
  10. M. Krstic and P. V. Kokotovic: Control Lyapunov function for adaptive nonlinear stabilization. Systems Control Lett. 26 (1995), 17-23.   DOI:10.1016/0167-6911(94)00107-7
  11. J. L. Massera: Contributions to stability theory. Ann. Math. 64 (1956), 182-206.   DOI:10.2307/1969955
  12. E. Moulay: Stabilization via homogeneous feedback controls. Automatica 44 (2008), 2981-2984.   DOI:10.1016/j.automatica.2008.05.003
  13. E. Moulay and W. Perruquetti: Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323 (2006), 1430-1443.   DOI:10.1016/j.jmaa.2005.11.046
  14. L. Rosier: Homogeneous Lyapunov function for homogeneous continuous vector field. Systems Control Lett. 19 (1992), 467-473.   DOI:10.1016/0167-6911(92)90078-7
  15. R. Sepulchre and D. Aeyels: Homogeneous Lyapunov functions and necessary conditions for stabilization. Math. Control Signals Syst. 9 (1996), 34-58.   DOI:10.1007/bf01211517
  16. M. H. Shafiei and M. J. Yazdanpanah: Stabilization of nonlinear systems with a slowly varying parameter by a control Lyapunov function. ISA Trans. 49 (2010), 215-221.   DOI:10.1016/j.isatra.2009.11.004
  17. E. D. Sontag: A "universal" construction of Artstein's Theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 117-123.   DOI:10.1016/0167-6911(89)90028-5
  18. E. D. Sontag: A Lyapunov-like caharacterization of asymptotic controlability. SIAM J. Control Optim. 21 (1983), 462-471.   DOI:10.1137/0321028
  19. J. Tsinias: Stabilization of affine in control nonlinear systems. Nonlinear Anal. TMA 12 (1988), 1283-1296.   DOI:10.1016/0362-546x(88)90060-0
  20. J. Tsinias: Sufficient Lyapunov like conditions for stabilization. Math. Control Signals Syst. 2 (1989), 343-357.   DOI:10.1007/bf02551276
  21. W. Zhang, H. Su, X. Cai and H. Guo: A control Lyapunov approach to stabilization of affine nonlinear systems with bounded uncertain parameters. Circuits Systems Signal Process. 34 (2015), 341-352.   DOI:10.1007/s00034-014-9848-8
  22. H. Wang, Z. Han, W. Zhang and Q. Xie: Synchronization of unified chaotic systems with uncertain parameters based on the CLF. Nonlinear Analysis: Real World Appl. 10 (2009), 2842-2849.   DOI:10.1016/j.nonrwa.2008.08.010
  23. H. Wang, Z. Han, W. Zhang and Q. Xie: Chaos control and synchronization of unified chaotic systems via linear control. J. Sound Vibration 320 (2009), 365-372.   DOI:10.1016/j.jsv.2008.07.023