Kybernetika 53 no. 5, 747-764, 2017

Distributed event-triggered algorithm for optimal resource allocation of multi-agent systems

Weiyong Yu, Zhenhua Deng, Hongbing Zhou and Xianlin ZengDOI: 10.14736/kyb-2017-5-0747

Abstract:

This paper is concerned with solving the distributed resource allocation optimization problem by multi-agent systems over undirected graphs. The optimization objective function is a sum of local cost functions associated to individual agents, and the optimization variable satisfies a global network resource constraint. The local cost function and the network resource are the private data for each agent, which are not shared with others. A novel gradient-based continuous-time algorithm is proposed to solve the distributed optimization problem. We take an event-triggered communication strategy and an event-triggered gradient measurement strategy into account in the algorithm. With strongly convex cost functions and locally Lipschitz gradients, we show that the agents can find the optimal solution by the proposed algorithm with exponential convergence rate, based on the construction of a suitable Lyapunov function. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed scheme.

Keywords:

multi-agent systems, distributed optimization, event-triggered strategy, resource allocation

Classification:

37N40, 90C26, 93A14

References:

  1. A. Beck, A. Nedić, A. Ozdaglar and M. Teboulle: An $O(1/k)$ gradient method for network resource allocation problems. IEEE Trans. Control Network Systems 1 (2014), 64-74.   DOI:10.1109/tcns.2014.2309751
  2. W. Chen and W. Ren: Event-triggered zero-gradient-sum distributed consensus optimization over directed networks. Automatica 65 (2016), 90-97.   DOI:10.1016/j.automatica.2015.11.015
  3. Z. Deng, X. Wang and Y. Hong: Distributed optimization design with triggers for disturbed continuous-time multi-agent systems. IET Control Theory Appl. 11 (2017), 282-290.   DOI:10.1049/iet-cta.2016.0795
  4. E. Ghadimi, I. Shames and M. Johansson: Multi-step gradient methods for networked optimization. IEEE Trans. Signal Processing 61 (2013), 5417-5429.   DOI:10.1109/tsp.2013.2278149
  5. C. Godsil and G. Royle: Algebraic Graph Theory. Springer-Verlag, New York 2001.   DOI:10.1007/978-1-4613-0163-9
  6. Y. Gao and L. Wang: Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology. IEEE Trans. Automat. Control 56 (2011), 1226-1231.   DOI:10.1109/tac.2011.2112472
  7. Y. C. Ho, L. Servi and R. Suri: A class of center-free resource allocation algorithms. Large Scale Systems 1 (1980), 51-62.   CrossRef
  8. H. K. Khalil: Nonlinear Systems. Third edition. Prentice Hall, New Jersey 2002.   CrossRef
  9. S. S. Kia, J. Cortés and S. Martínez: Distributed convex optimization via continuous-time coordinate alorithms with discrete-time communication. Automatica 55 (2015), 254-264.   DOI:10.1016/j.automatica.2015.03.001
  10. D. Lehmann and J. Lunze: Event-based control with communication delays and packet losses. Int. J. Control 85 (2012), 563-577.   DOI:10.1080/00207179.2012.659760
  11. H. Lakshmanan and D. P. Farias: Decentralized resource allocation in dynamic networks of agents. SIAM J. Optim. 19 (2008), 911-940.   DOI:10.1137/060662228
  12. J. Hu, G. Chen and H. Li: Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays. Kybernetika 47 (2011), 630-643.   CrossRef
  13. A. Nedić, A. Ozdaglar and P. A. Parrilo: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 922-938.   DOI:10.1109/tac.2010.2041686
  14. Y. Lou, G. Shi, K. Johansson and Y. Hong: Approximate projected consensus for convex interesection computation: convergence analysis and critical error angle. IEEE Trans. Automat. Control 59 (2014), 1722-1736.   DOI:10.1109/tac.2014.2309261
  15. R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton 1972.   CrossRef
  16. A. P. Ruszczynski: Nonlinear Optimization. Princeton University Press, Princeton 2006.   CrossRef
  17. P. Tabuada: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Automat. Control 52 (2007), 1680-1685.   DOI:10.1109/tac.2007.904277
  18. X. Wang, P. Yi and Y. Hong: Dynamic optimization for multi-agent systems with external disturbances. Control Theory Technol. 12 (2014), 132-138.   DOI:10.1007/s11768-014-0036-y
  19. X. Wang, Z. Deng, S. Ma and X. Du: Event-triggered design for multi-agent optimal consensus of Euler-Lagrangian systems. Kybernetika 1 (2017), 179-194.   CrossRef
  20. L. Xiao and S. Boyd: Optimal scaling of a gradient method for distributed resource allocation. J. Optim. Theory and Appl. 129 (2006), 469-488.   DOI:10.14736/kyb-2017-1-0179
  21. Y. Zhang and Y. Hong: Distributed event-triggered tracking control of multi-agent systems with active leader. In: Proc. 10th IEEE World Congress on Intelligent Control and Automation 2012, pp. 1453-1458.   DOI:10.1109/wcica.2012.6358108
  22. Y. Zhang, Y. Lou, Y. Hong and L. Xie: Distributed projection-based algorithms for source localization in wireless sensor networks. IEEE Trans. Wireless Communications 14 (2015), 3131-3142.   DOI:10.1109/twc.2015.2402672
  23. P. Yi, Y. Hong and F. Liu: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems. Automatica 74 (2016), 259-269.   DOI:10.1016/j.automatica.2016.08.007