Kybernetika 53 no. 4, 679-693, 2017

Tube-MPC for a class of uncertain continuous nonlinear systems with application to surge problem

Masoud Taleb Ziabari, Mohammad Reza Jahed-Motlagh, Karim Salahshoor, Amin Ramezani and Ali MoarefianpourDOI: 10.14736/kyb-2017-4-0679


This paper presents a new robust adaptive model predictive control for a special class of continuous-time non-linear systems with uncertainty. These systems have bounded disturbances with unknown upper bound, as well as constraints on input states. An adaptive control is used in the new controller to estimate the system uncertainty. Also, to avoid the system disturbances, a $H_{\infty }$ method is employed to find the appropriate gain in Tube-MPC. Finally, a surge avoidance problem in centrifugal compressors is solved to show the efficiency and effectiveness of the proposed algorithm.


robust control, adaptive control, $H_{\infty }$ method, tube-MPC, surge


93C10, 93D09, 93C40, 93C42, 37N35


  1. R. Bindlish: Nonlinear model predictive control of an industrial polymerization process. Computers Chemical Engrg. 73 (2015), 43-48.   DOI:10.1016/j.compchemeng.2014.11.001
  2. F. A. Cuzzola, J. C. Geromel and M. Morari: An improved approach for constrained robust model predictive control. Automatica 38 (2002), 1183-1189.   DOI:10.1016/s0005-1098(02)00012-2
  3. B. Ding and T. Zou: A synthesis approach for output feedback robust model predictive control based-on input-output model. J. Process Control 24 (2014), 60-72.   DOI:10.1016/j.jprocont.2013.12.006
  4. M. Ghanavati and A. Chakravarthy: Demand-side energy management by use of a design-then-approximate controller for aggregated thermostatic loads. In: Amer. Control Conference (ACC), Chicago 2015.   DOI:10.1109/acc.2015.7171900
  5. M. Ghanavati and A. Chakravarthy: Demand-side energy management using an adaptive control strategy for aggregate thermostatic loads. In: AIAA SciTech Forum 2015, pp. 1-7.   DOI:10.2514/6.2015-0121
  6. M. Ghanavati, S. Mobayen and V. J. Majd: A new robust model predictive control strategy for rotational inverted pendulum system. In: Int. Siberian Conference on Control and Communications (SIBCON) 2011, pp. 33-38.   DOI:10.1109/sibcon.2011.6072589
  7. J. T. Gravdahl and O. Egeland: Compressor Surge and Rotating Stall: Modeling and Control. Springer-Verlag, London 1999.   DOI:10.1007/978-1-4471-0827-6
  8. E. M. Greitzer: Surge and rotating stall in axial flow compressors. Part I: Theoretical compression system model. ASME J. Engrg. for Power 98 (1976), 2, 191-198.   DOI:10.1115/1.3446138
  9. B. Gu and Y. P. Gupta: Control of nonlinear processes by using linear model predictive control algorithms. ISA Trans. 47 (2008), 211-216.   DOI:10.1016/j.isatra.2007.12.002
  10. D. F. He, H. Huang and Q. X. Chen: Quasi-min-max MPC for constrained nonlinear systems with guaranteed input-to-state stability. J. Franklin Inst. 351 (2014), 3405-3423.   DOI:10.1016/j.jfranklin.2014.03.006
  11. M. V. Kothare, V. Balakrishnan and M. Morari: Robust constrained model predictive control using linear matrix inequalities. Automatica 32 (1996), 1361-1379.   DOI:10.1016/0005-1098(96)00063-5
  12. B. Kouvaritakis, J. A. Rossiter and J. Schuurmans: Efficient robust predictive control. IEEE Trans. Automat. Control 45 (2000), 1545-1549.   DOI:10.1109/9.871769
  13. L. Magni, G. De Nicolao, L. Magnani and R. Scattolini: A stabilizing model based predictive control algorithm for nonlinear systems. Automatica 37 (2001), 1351-1362.   DOI:10.1016/s0005-1098(01)00083-8
  14. F. K. Moore and E. M. Greitzer: A theory of post-stall transientin axial compression systems: Part I - Development of equations. ASME J. Engrg. for Gas Turbines and Power 108 (1986), 68-76.   DOI:10.1115/1.3239887
  15. N. Poursafar, H. D. Taghirad and M. Haeri: Model predictive control of nonlinear discrete time systems: a linear matrix inequality approach. IET Proc. Control Theory Appl. 4 (2010), 1922-1932.   DOI:10.1049/iet-cta.2009.0650
  16. M. Razi and M. Haeri: Design of a robust model predictive controller with reduced computational complexity. ISA Trans. 53 (2014), 1754-1759.   DOI:10.1016/j.isatra.2014.09.008
  17. S. Shamaghdari, S. K. Y. Nikravesh and M. Haeri: Integrated guidance and control of elastic flight vehicle based on robust MPC. Int. J. Robust Nonlinear Control 25 (2015), 2608-2630.   DOI:10.1002/rnc.3215
  18. H. Sheng, W. Huang, T. Zhang and X. Huang: Robust Adaptive Fuzzy Control of Compressor Surge Using Backstepping. Arabian J. Science and Engrg. 39 (2014), 9301-9308.   DOI:10.1007/s13369-014-1448-1
  19. L. X. Wang: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall, Englewood Cliffs 1994.   CrossRef
  20. S. Y. Yu, C. Bohm, H. Chen and F. Allgower: Robust model predictive control with disturbance invariant sets. In: Proc. Amer. Contr. Conf., Baltimore 2010, pp. 6262-6267.   DOI:10.1109/acc.2010.5531520
  21. S. Yu, C. Maier, H. Chen and F. Allgower: Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems. Systems Control Lett. 62 (2013), 194-200.   DOI:10.1016/j.sysconle.2012.11.004
  22. P. Zheng, D. Li, Y. Xi and J. Zhang: Improved model prediction and RMPC design for LPV systems with bounded parameter changes. Automatica 49 (2013), 3695-3699.   DOI:10.1016/j.automatica.2013.09.024