Kybernetika 53 no. 4, 578-594, 2017

Backstepping based nonlinear adaptive control for the extended nonholonomic double integrator

Waseem Abbasi, Fazal urRehman and Ibrahim ShahDOI: 10.14736/kyb-2017-4-0578


In this paper a steering control algorithm for the Extended Nonholonomic Double Integrator is presented. An adaptive backstepping based controller is proposed which yields asymptotic stabilization and convergence of the closed loop system to the origin. This is achieved by transforming the original system into a new system which can be globally asymptotically stabilized. Once the new system is stabilized, the stability of the original system can be easily established. Stability of the closed loop system is analyzed on the basis of Lyapunov theory. The effectiveness of the proposed control algorithm is verified through numerical simulation and the results are compared to existing methods.


Lyapunov function, feedback stabilization, nonholonomic systems, systems with drift, adaptive backstepping




  1. W. Abbassi and F. Rehman: Adaptive integral sliding mode stabilization of nonholonomic drift-free systems. Math. Problems Engrg. 2016 (2016), 1-11.   DOI:10.1155/2016/9617283
  2. A. P. Aguiar, A. N. Atassi and A. M. Pascoal: Regulation of a nonholonomic dynamic wheeled mobile robot with parametric modeling uncertainty using Lyapunov functions. In: Proc. 39th IEEE Conference on Decision and Control 3 (2000), 2995-3000.   DOI:10.1109/cdc.2000.914276
  3. A. P. Aguiar and A. M. Pascoal: Stabilization of the extended nonholonomic double integrator via logic-based hybrid control. IFAC Proc. Vol. 33 (2000), 27, 351-356.   DOI:10.1016/s1474-6670(17)37954-5
  4. A. Astolfi: Discontinuous control of the Brockett integrator. Europ. J. Control, 1, (1998), 49-63.   DOI:10.1016/s0947-3580(98)70099-8
  5. A. Bloch and S. Drakunov: Stabilization and tracking in the nonholonomic integrator via sliding modes. Systems Control Lett. 2 (1996), 91-99.   DOI:10.1016/s0167-6911(96)00049-7
  6. R. W. Brockett: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory (R. W. Brockett, R. S. Millman, and H. J. Sussman, eds.), Birkhauser, Boston 1983, pp. 181-191.   CrossRef
  7. W. E. Dixon, Z. P. Jiang and D. M. Dawson: Global exponential setpoint control of wheeled mobile robots: A Lyapunov approach. In: Proc. 39th IEEE Conference on Decision and Control 2 (1999), 265-279.   CrossRef
  8. G. Escobar, R. Ortega and M. Reyhanoglu: Regulation and tracking of the nonholonomic double integrator: A field-oriented control approach. Automatica 1 (1998), 125-131.   DOI:10.1016/s0005-1098(97)00155-6
  9. F. Fang and L. Wei: Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units. Appl. Energy 3 (2011), 814-824.   DOI:10.1016/j.apenergy.2010.09.003
  10. J-M. Godhavn and O. Egeland: A Lyapunov approach to exponential stabilization of nonholonomic systems in power form. IEEE Trans. Automat. Control 7 (1997), 1028-1032.   DOI:10.1109/9.599989
  11. Z. P. Jiang and H. Nijmeijer: A recursive technique for tracking control of nonholonomic systems in chained form. In: Proc. 39th IEEE Conference on Decision and Control 2 (1999), 265-279.   DOI:10.1109/9.746253
  12. I. Kolmanovsky and N. H. McClamroch: Developments in nonholonomic control problems. IEEE Control Syst. 6 (1995), 20-36.   DOI:10.1109/37.476384
  13. P. Morin and C. Samson: Control of Nonlinear Chained Systems: From the Routh-Hurwitz Stability Criterion to Time-Varying Exponential Stabilizers. Springer 2000.   CrossRef
  14. A. M. Pascoal and A. P. Aguiar: Practical stabilization of the extended nonholonomic double integrator. In: Proc. 10th Mediterranean Conferenceon Control and Automation, 2002.   CrossRef
  15. J. B. Pomet: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems Control Lett. 2 (1992), 147-158.   DOI:10.1016/0167-6911(92)90019-o
  16. F. Rehman: Steering control of nonholonomic systems with drift: The extended nonholonomic double integrator example. Nonlinear Analysis Theory Methods Appl. 8 (2005), 1498-1515.   DOI:10.1016/
  17. L.-Y. Sun, S. Tong and Y. Liu: Adaptive backstepping sliding mode H infinity control of static var compensator. IEEE Trans. Control Systems Technol. 5 (2011), 1178-1185.   DOI:10.1109/tcst.2010.2066975
  18. Z. Wang, S. Li. and S. Fei: Finite-time tracking control of a nonholonomic mobile robot. Asian J. Control 3 (2009), 344-357.   DOI:10.1002/asjc.112
  19. J. Zhou and C. Wen: Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations. Springer 2008.   CrossRef