Kybernetika 53 no. 3, 545-561, 2017

Consensus-based state estimation for multi-agent systems with constraint information

Chen Hu, Weiwei Qin, Zhenhua Li, Bing He and Gang LiuDOI: 10.14736/kyb-2017-3-0545


This paper considers a distributed state estimation problem for multi-agent systems under state inequality constraints. We first give a distributed estimation algorithm by projecting the consensus estimate with help of the consensus-based Kalman filter (CKF) and projection on the surface of constraints. The consensus step performs not only on the state estimation but also on the error covariance obtained by each agent. Under collective observability and connective assumptions, we show that consensus of error covariance is bounded. Based on the Lyapunov method and projection, we provide and prove convergence conditions of the proposed algorithm and demonstrate its effectiveness via numerical simulations.


stability, multi-agent systems, distributed Kalman filter, state constraints




  1. R. G. Agniel and E. I Jury: Almost sure boundedness of randomly sampled systems. SIAM J. Control 9 (1971), 372-384.   DOI:10.1137/0309027
  2. G. Battistelli and L. Chisci: Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability. Automatica 50 (2014), 707-718.   DOI:10.1016/j.automatica.2013.11.042
  3. B. M. Bell, J. V. Burke and G. Pillonetto: An inequality constrained nonlinear Kalman-Bucy smoother by interior point likelihood maximization. Automatica 45 (2009), 25-33.   DOI:10.1016/j.automatica.2008.05.029
  4. S. Boyd and L. Vandenberghe: Convex Optimization. Cambridge University Press, Cambridge 2004.   DOI:10.1017/cbo9780511804441
  5. F. Cattivelli and A. Sayed: Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Automat. Control 55 (2010), 2069-2084.   DOI:10.1109/tac.2010.2042987
  6. S. Das and J. M. F. Moura: Distributed Kalman filtering with dynamic observations consensus. IEEE Trans. Signal Process. 63 (2015), 4458-4473.   DOI:10.1109/tsp.2015.2424205
  7. C. Godsil and G. Royle: Algebraic Graph Theory. Springer-Verlag, New York 2001.   DOI:10.1007/978-1-4613-0163-9
  8. G. C. Goodwin, M. M. Seron and J. A. De Doná: Constrained Control And Estimation: An Optimisation Approach. Springer-Verlag, New York 2006.   DOI:10.1007/b138145
  9. N. Gupta and R. Hauser: Kalman filtering with equality and inequality state constraints. arXiv preprint arXiv:0709.2791
  10. J. Hu and X. Hu: Optimal target trajectory estimation and filtering using networked sensors. In: Proc. 27th Chinese Control Conference, Kunming 2008, 540-545.   DOI:10.1109/chicc.2008.4605514
  11. J. Hu and X. Hu: Nonlinear filtering in target tracking using cooperative mobile sensors. Automatica 46 (2010), 2041-2046.   DOI:10.1016/j.automatica.2010.08.016
  12. C. Hu, W. Qin, B. He and G. Liu: Distributed $H_{\infty}$ estimation for moving target under switching multi-agent network. Kybernetika 51 (2014), 814-829.   DOI:10.14736/kyb-2015-5-0814
  13. J. Hu, L. Xie and C. Zhang: Diffusion Kalman filtering based on covariance intersection. IEEE Trans. Signal Process. 60 (2012), 891-902.   DOI:10.1109/tsp.2011.2175386
  14. A. T. Kamal, J. A. Farrell and A. K. Roy-Chowdhury: Information weighted consensus filters and their application in distributed camera networks. IEEE Trans. Automat. Control 58 (2013), 3112-3125.   DOI:10.1109/tac.2013.2277621
  15. U. A. Khan and A. Jadbabaie: Collaborative scalar-gain estimators for potentially unstable social dynamics with limited communication. Automatica 50 (2014), 1909-1914.   DOI:10.1016/j.automatica.2014.05.008
  16. S. Ko and R. Bitmead: State estimation for linear systems with state equality constraints. Automatica 43 (2007), 1363-1368.   DOI:10.1016/j.automatica.2007.01.017
  17. I. Matei and J. S. Baras: Consensus-based linear distributed filtering. Automatica 48 (2012), 1776-1782.   DOI:10.1016/j.automatica.2012.05.042
  18. A. Nedić, A. Ozdaglar and P. A. Parrilo: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat Control 55 (2010), 922-938.   DOI:10.1109/tac.2010.2041686
  19. R. Olfati-Saber: Distributed Kalman filtering for sensor networks. in Proc. IEEE Conference on Decision and Control, New Orleans 2007, pp. 5492-5498.   DOI:10.1109/cdc.2007.4434303
  20. R. Olfati-Saber: Kalman-consensus filter: Optimality, stability, and performance. In: Proc. Joint IEEE Conference on Decision and Control and Chinese Control Conference, Shanghai 2009, pp. 7036-7042.   DOI:10.1109/cdc.2009.5399678
  21. K. Reif, S. Günther, E. Yaz and R. Unbehauen: Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans. Automat. Control 44 (1999), 714-728.   DOI:10.1109/9.754809
  22. G. Shi, K. Johansson and Y. Hong: Reaching an optimal consensus: Dynamical systems that compute intersections of convex sets. IEEE Trans. Automatic Control 58 (2013), 610-622.   DOI:10.1109/tac.2012.2215261
  23. D. Simon: Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Control Theory Appl. 4 (2010), 1303-1318.   DOI:10.1049/iet-cta.2009.0032
  24. D. Simon and T. L. Chia: Kalman filtering with state equality constraints. IEEE Trans. Aerospace Electronic Systems 38 (2002), 128-136.   DOI:10.1109/7.993234
  25. D. Simon and D. L. Simon: Kalman filtering with inequality constraints for turbofan engine health estimation. IEE Proc. Control Theory Appl. 153 (2006), 371-378.   DOI:10.1049/ip-cta:20050074
  26. S. S. Stanković, M. S. Stanković and D. M. Stipanović: Consensus based overlapping decentralized estimation with missing observations and communication faults. Automatica 45 (2009), 1397-1406.   DOI:10.1016/j.automatica.2009.02.014
  27. T. J. Tarn and Y. Rasis: Observers for nonlinear stochastic systems. IEEE Trans. Automat. Control 21 (1976), 441-448.   DOI:10.1109/tac.1976.1101300
  28. L. Xiao and S. Boyd: Fast linear iterations for distributed averaging. Syst. Control Lett. 53 (2004), 65-78.   DOI:10.1016/j.sysconle.2004.02.022
  29. Z. Zhou, H. Fang and Y. Hong: Distributed estimation for moving target under switching interconnection network. In: Proc. 12th International Conference on Control Automation Robotics Vision (ICARCV), Guangzhou 2012, pp. 1818-1823.   DOI:10.1109/icarcv.2012.6485124
  30. Z. Zhou, H. Fang and Y. Hong: Distributed estimation for moving target based on state-consensus strategy. IEEE Trans. Automat. Control 58 (2013), 2096-2101.   DOI:10.1109/tac.2013.2246476