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CONSENSUS-BASED STATE ESTIMATION FOR
MULTI-AGENT SYSTEMS WITH
CONSTRAINT INFORMATION

Chen Hu, Weiwei Qin, Zhenhua Li, Bing He, Gang Liu

This paper considers a distributed state estimation problem for multi-agent systems under
state inequality constraints. We first give a distributed estimation algorithm by projecting the
consensus estimate with help of the consensus-based Kalman filter (CKF) and projection on the
surface of constraints. The consensus step performs not only on the state estimation but also
on the error covariance obtained by each agent. Under collective observability and connective
assumptions, we show that consensus of error covariance is bounded. Based on the Lyapunov
method and projection, we provide and prove convergence conditions of the proposed algorithm
and demonstrate its effectiveness via numerical simulations.
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1. INTRODUCTION

Multi-agent systems have attracted much interest recently due to its broad range of
applications in engineering systems such as aerospace, sensor networks and public trans-
portation. As one of the important problem, distributed estimation cares about de-
signing distributed algorithm to estimate the state of a process in multi-agent system.
Among the distributed estimation methods, Kalman-filter-based estimation has received
great attention due to its ability of tracking a dynamic process.

Most of existing methods in distributed Kalman-filter-based estimation are based on
consensus strategy [5, 12, 13, 19, 20, 26, 28–30], which combine the consensus idea with
state update based on the Kalman filter, called Kalman-consensus filter (KCF). For
example, a distributed Kalman filter was developed in [19] using two identical consen-
sus filters. Since the optimal KCF is not scalable and needs all-to-all communication,
a scalable suboptimal KCF was reported in [20]. Moreover, an algorithm for overlapping
decentralized estimator was developed based on the consensus strategy in [26] assuming
intermittent observations and communication faults. Additionally, some results were ob-
tained for switching communication topologies [12, 30] and nonlinear distributed filtering
[10, 11]. However, most of the results [5, 12, 13, 20, 26, 28–30] required the local observ-
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able condition (i. e., each agent should be observable), which is not suitable in practical
application. Different from the consensus approach to find the optimal Kalman filter
gain and consensus gain in the distributed filtering, another kind of approach is to fuse
the local estimate obtained by the Kalman filter [2, 5, 13], which can be treated as
fusion-based distributed estimation. In [5], a distributed diffusion-based Kalman filter
was realised by fusing estimate from neighbors’, and the authors discussed convergence
property under local observable condition. In [13], a diffusion Kalman filter based on a
covariance intersection scheme was proposed by incorporating the covariance informa-
tion. Note that how to find the optimal weights for fusion is the main challenge in the
design of such distributed Kalman filters.

In many practical applications, we may obtain some priori knowledge about a system
that Kalman filter dose not incorporate directly. The priori knowledge often formulate
as equlity or inequality constraints about state variables, and we may use constraints
information to improve estimate performance. There are various schemes incorporating
state constraints information in the Kalman filter structure [3, 8, 9, 16, 24, 25]. [16] stud-
ied constrained filter by system projection. It use the fact that the process noise is also
constrained, and constructed the optimal estimator which also satisfy the constraints.
In [24], the constrained estimation obtained by projecting the unconstrained estimation
onto the constrained surface, and it has proved that the projection approach with linear
equality constraints performs better than unconstrained estimation by choosing suitable
weights. In [9], the author studied the Kalman filter with inequality constraints. Among
those approaches, the projection one has simple and clear interpretations by projecting
the unconstrained estimation onto the constrained surface. In distributed scenario, we
also wish to obtain state estimates that take advantage of constraint information to get
better estimate than those in the absence of information.

The objective of this paper is to study distributed Kalman filter design with state
inequality constraints, which is an important problem. To solve the problem, we propose
algorithm combining the ideas of the consensus-based Kalman filter with the projection
method. Each agent communicates with its neighbors to obtain an estimate based on
consensus strategy, and then projects the unconstrained consensus-based estimate onto
the surface defined by the inequality constraints only when the estimate does not sat-
isfy the constraints. The contributions of this paper are summarized as follows. We
study the distributed consensus-based Kalman filter with state constraints over a sensor
network and propose distributed estimation algorithm. The work can be viewed as a
distributed extension of the conventional ones, and an extension of some conventional
results by studying inequalities rather than equalities. Under collective observability
and connection assumption, the proposed distributed Kalman filter algorithm with in-
equality constraints design by projecting the unconstrained estimation onto the surface
of constraints. It is worth noting that our algorithm is fully distributed and under col-
lective observable condition, i. e., each agent does not need to be observable, which is
much more suitable in application. Also, we provide and prove the stability conditions
of the distributed projection-based algorithms using the Lyapunov method.

The remainder of the paper is organized as follows. Necessary preliminaries and
the problem formulation are given in section 2. Consensus-basd distributed estimation
algorithm with projection method is given in section 3. Then stability analysis of the
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proposed algorithm are provided and convergence results are obtained in section 4.
Numerical simulation is shown in section 5, which shows that the algorithm proposed
with constraints performs better than the existing unconstrained distributed estimation
algorithm. Finally, some concluding remarks are provided in section 6.

Notations: The set of real number is denoted by R. For a symmetric matrix M ,
M ≥ 0 (M > 0) means that the matrix is positive semi-definite (definite), and M1 ≥
M2 means that M1 −M2 ≥ 0. λmax(·) and λmin(·) denote maximum and minimum
eigenvalue, respectively. ‖M ‖ represents the spectral norm ofM and det(M) denotes its
determinant. Furthermore, diag{M1,M2, . . . ,Mn} represents the block-diagonal matrix.
E{·} represents mathematical expectation. Tr(M) represents the trace of matrix M ,
where M ∈ Rm×m.

2. PROBLEM FORMULATION

2.1. Preliminaries

We introduce some concepts of graph theory [7]. An undirected graph is denoted as
G = (V ,E ), where V = {1, 2, . . . , N} is the node set, and E = {(i, j) : i, j ∈ V } is
the edge set. If node i and node j are connected by an edge, then these two vertices
are called adjacent. The neighbor set of node i is defined by Ni = {j : (i, j) ∈ E },
which includes node i itself. The size of Ni is denoted as |Ni|. In this paper, node i
can be regarded as agent i, and the communication link can be treated as edge. A path
is a sequence of edges of the form (i1, i2), (i2, i3), . . . , where ij ∈ V . The graph G is
connected if there exists a path between any two vertices of graph G . The weighted
adjacency matrix of graph G is defined as A = (aij)NN ∈ RN×N , where

∑N
j=1 aij = 1

and aij > 0.
Next, we present some preliminaries about convex analysis [4]. A function f(·) :

Rm → Rn is said to be convex if f(ax+ (1−a)y)≤af(x) + (1−a)f(y) for any x, y ∈ Rm
and 0 < a < 1. A set X ∈ Rn is convex if ax+(1−a)y ∈ X for any x, y ∈ X and 0≤a≤1.
For any closed and convex subset X of Rn, define the projection onto X, denoted by
PX : Rn → X, as follows:

PX(z) = argmin
x∈X
‖ x− z ‖ .

Projection is widely used to deal with constraints (referring to [18] and [22])
The following lemma shows some projection properties for the following analysis

(which can be found in [18]).

Lemma 2.1. Let X be a closed convex set in Rm. Then

(i) (PX(x)− x)>(z −PX(x)) ≥ 0, for all z ∈ X;

(ii) ‖ PX(x)−PX(z) ‖≤‖ x− z ‖, for all x and z;

(iii) ‖ PX(x)− z ‖2≤‖ x− z ‖2 − ‖ PX(x)− x ‖2, for any z ∈ X.

Then we introduce some concepts related to stochastic processes, which are useful in
the following convergence analysis ([1, 27]).
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Definition 2.2. The stochastic process ζk is said to be exponential bounded in mean
square, if there are real numbers, η > 0, ϑ > 0 and 0 < ν < 1 such that

E{‖ζk‖2} ≤ η‖ζ0‖2ϑk + ν (1)

holds for every k ≥ 0.

Definition 2.3. The stochastic process ζk is said to be bounded with probability one,
if

sup
k≥0
‖ζk‖ <∞ (2)

holds with probability one.

2.2. Formulation

Consider the dynamics of a target described by

xk+1 = Axk + wk, (3)

where xk ∈ Rm is the states, wk is additive process noises and modeled as m-dimensional
Gaussian white noise with zero-mean and covariance Q > 0. We assume that A is
nonsingular.

Sometimes, additional information such as state constraints may be known as priori
knowledge in practice. In fact, some limitations/constraints for the states may be known
according to the design specification or physical laws, for example, a tank with a limited
liquid level and a moving car along a given road (and more engineering applications can
be found in [23]). Here, for the dynamics of the target (3), the state constraints are
given as the following inequalities

qt(x) ≤ 0, t = 1, . . . , s, (4)

where qt(x) : Rm → R is a convex function and s is the number of the constraints. Many
practical examples can be formulated with state inequality constraints [3, 8, 25]. For
instance, in target tracking problem, the norm of acceleration should be below a bound,
and in process control key variables are known to lie in certain regions.

A network consisting of N agents is used to estimate xk. The measurement equation
of the ith agent is given by:

yi,k = Cixk + vi,k, (5)

where Ci ∈ Rqi×m, vi,k is the measurement noises by sensor i, which is assumed to be
zero-mean white Gaussian with covariance Ri > 0. vi,k is independent of wk ∀k, i and
is independent of vj,s when i 6= j or k 6= s.

The communication between agents is described by an undirected graph G with
V = 1, 2, . . . , N and Laplacian L. The edge (i, j) means that the ith agent can re-
ceive information from the jth agent. The number of neighboring agents of the ith
agent is denoted by di.

Denote C = [C>1 , . . . , C
>
N ]>, the following two standard assumptions are adopted,

which have been widely used.
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Assumption 2.4. The undirected graph G is connected.

Assumption 2.4 is a basic assumption in most of works [6, 29, 30]. To ensure the double
stochastic of weight matrix A , a possible choise of the weights [28] is

aij =
1

max{|Ni|, |Nj |}
, j ∈ Ni, i6=j,

aii = 1−
∑

j∈Ni,j 6=i

aij .

Moreover, when we consider a directed graph, a necessary condition for the weight matrix
A to be primitive is that the associated graph G is strong connected1.

Assumption 2.5. (A,C) is observable.

Remark 2.6. Assumption 2.5 is different from that given in many existing works [5, 20,
26, 30], which rely on local observability, i. e., each agent is observable. Our work only
need collective observable, which is much more suitable in applications. Works in [14, 19]
developed distributed estimation algorithms under collective observability assumption.
However, they need to communicate infinity time between any two sampling instance.
In [6, 15], authors dealt with the problem under collective observable condition. While,
some global information is needed in order to guarantee the stability of the algorithms.
In section 3, we will propose a fully distributed algorithm, which does not rely on
any global information and only need to communicate once between any two sampling
instance.

Using the measurement and neighbors’ information, the following consensus-based
Kalman estimator can be constructed for agent i,

x̄i,k = Ax̃i,k−1, (6)
εi,k = Ax̄i,k−1 +Ki,k(yi,k − Cix̄i,k−1), (7)

x̃i,k =
N∑
j=1

aijεj,k, (8)

where Ki,k is the estimator gain, and x̃i,k is the consensus estimate by agent i. The
aim of estimator (6), (7) and (8) is to find the estimator gain Ki,k to minimize the
mean-squared estimation error

∑N
i=1 ‖ x̃i,k − xk ‖2.

This paper deals with the problem of distributed estimation with inequality con-
straints (4). In other words, the constrained estimation problem can be written as
follows:

min
x̂i,k

(x̂i,k − x̃i,k)>(x̂i,k − x̃i,k),

s.t. qt(x̂i,k) ≤ 0, t = 1, . . . , s.
(9)

1A graph is called strong connected if for any pair of node (i, j) there exists a path from i to j and
vice versa.
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Here, the information about constraint (4) is shared by all agents, and therefore, for
each agent, the constrained estimation can be obtained by projection,

x̂i,k = PX(x̃i,k), (10)

with X = {x | qt(x) ≤ 0, t = 1, . . . , s}.
Most of the distributed Kalman filter designs did not consider any state constraints.

Here we consider a constrained distributed estimation problem, which is much more
difficult than those without constraints. In [24], the authors proposed an estimation
method by projecting the unconstraint estimation onto the constrained surface. When
it comes to distributed system, we need to guarantee that the estimate from all the
agents, obtained by exchanging information with neighbors, should satisfy the given
constraints. Hence, to solve our problem, we have to show how to design the Kalman
filter gain Ki,k such that the estimation error of (10) is stable.

In the following section, we present a distributed estimation algorithm, and analyze
the stochastic stability of the proposed algorithm.

3. DISTRIBUTED ALGORITHM

The proposed consensus-based Kalman filter with constraints is described in Algo-
rithm 1.

Algorithm 1 CKF with constraints
Initialization
x̂i,0, Pi,0;
Local Estimation
x̄i,k = Ax̂i,k−1,
P̄i,k = APi,k−1A

> +Q,
εi,k = x̄i,k−1 +Ki,k(yi,k − Cix̄i,k−1),
Ki,k = P̄i,kC

>
i (CiP̄i,kC>i +Ri)−1,

P̃i,k = (I −Ki,kCi)P̄i,k;
Consensus
x̃i,k =

∑N
j=1 aijεj,k,

Pi,k =
∑N
j=1 aijP̃j,k;

Projection
x̂i,k = PX(x̃i,k).

Note that local estimation step is performed according to the classical Kalman filter.
The unconstrained estimation is then obtained by the consensus operation with its
neighbors. Finally, the constrained estimation of each agent is achieved by projection.
If we ignore the consensus on error covariance and projection step in the case without
constraints, our algorithm can be reduced to the DKF described in [17], still with the
advantages of low computational complexity and easy implementation.

According to Lemma 2.1,

Tr(E{(xk − x̂i,k)(xk − x̂i,k)>}) ≤ Tr(E{(xk − x̃i,k)(xk − x̃i,k)>}),
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which indicates that the estimator can achieve better performance using the constraint
information in the design. In [24], the authors proved that the projection approach with
linear equality constraints performs better than unconstrained estimation by choosing
suitable weights.

Define error terms ei,k = xk−x̂i,k, ẽi,k = xk−x̃i,k, ε̃i,k = xk−εi,k and ēi,k = xk−x̄i,k.
The error dynamics ẽi,k can, therefore, be written as

ẽi,k =
N∑
j=1

aij ε̃j,k. (11)

Notice that Pi,k in the algorithm does not represent the estimation error covariance with
respect to x̂i,k any longer. In section IV, we will show that Pi,k is bounded and error
term ei,k is stable.

Remark 3.1. In this paper, the constraints are formulated as inequalities qt(x) ≤ 0,
t = 1, . . . , s, where qt(x), t = 1, . . . , s is convex, including the case of linear equality and
inequality constraints studied in [24] and [9], respectively. In section 4, the closed-form
solution will be given under linear equality constraints Dkxk = dk as a special case,
consistent with the case in [24]. Notice that the projection method may not be suitable
for the nonlinear equality constraints qt(x) = 0, t = 1, . . . , s, because {x| qt(x) = 0,
t = 1, . . . , s} may not be a convex set.

Remark 3.2. To facilitate the convergence analysis of the algorithms, we provide some
notations here. In fact, without loss of generality, there are positive scalars b̄, c̄, q and
ri such that

‖A‖ ≤ ā, ‖Ci‖ ≤ c̄i, Q ≥ qI, Ri ≥ riI. (12)

Since A,Ci, Q,Ri are given, the inequalities are obvious.

4. MAIN RESULTS

In this section, we analyze the convergence of the proposed algorithm. We first give two
lemmas, which are useful in convergence analysis.

Lemma 4.1. (Lemma 2.1, Reif et al. [21]) Suppose that there is a stochastic process
Vk(ξk) as well as positive numbers θ̄, θ, µ, and 0 < α ≤ 1 such that

θ ‖ ξk ‖2 ≤Vk(ξk)≤θ̄ ‖ ξk ‖2 (13)

and
E{Vk+1(ξk+1)|ξk} − Vk(ξk)≤µ− αVk(ξk) (14)

are fulfilled. Then the stochastic process is exponentially bounded in mean square, i. e.,

E{‖ ξk ‖2}≤
θ̄

θ
E{‖ ξ0 ‖2}(1− α)n +

µ

u

n−1∑
i=1

(1− α)i (15)

for every n ≥ 0. Moreover, the stochastic process is bounded with probability one.
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Lemma 4.2. (Lemma 1, Battistelli and Chisci [2]) For any positive semidefinite matrix
P̌ , there exists a strictly positive real β ≤ 1 such that (APA> + Q)−1≥βA−>P−1A−1

for any P ≤ P̌ .

We now present our first main result.

Theorem 4.3. (Boundedness) Consider algorithm 1, under Assumption 2.4 and 2.5,
there exist a time instant k̄ > 0 and a positive definite matrix Πi, such that
0 < Pi,k < Πi, ∀i ∈ V and k ≥ k̄.

P r o o f . By information form of Kalman filter, we can see that P̃−1
j,k = P̄−1

j,k +C>j R
−1
j Cj ,

thus Pi,k can be written as

Pi,k+1 =
N∑
j=1

aij(P̄−1
j,k+1 + C>j R

−1
j Cj)−1. (16)

Notice that P̄j,k+1 = APi,kA
> +Q, then by Lemma 4.2 one can obtain

Pi,k+1 ≤
N∑
j=1

aijβ
−1APj,kA

> +
N∑
j=1

aijC
>
j R
−1
j Cj , (17)

where 0 < β < 1.Taking inverse to both side of (17), and recursively applying (16) and
(17) k̄ times, one can obtain

P−1
i,k+1≥

β−k̄Ak̄(
N∑
j=1

aij,k̄Pj,k−k̄)(Ak̄)> +
k̄∑
τ=1

β1−τAτ−1(
N∑
j=1

aij,k̄C
>
j R
−1
j Cj)(Aτ−1)>

−1

(18)

where aij,k denote the (i, j)th element of Ak. We need to show P−1
i,k+1 is lower bounded

by a positive definite matrix.
Define

∆1 = β−k̄Ak̄(
N∑
j=1

aij,k̄Pj,k−k̄)(Ak̄)>, (19)

∆2 =
k̄∑
τ=1

β1−τAτ−1(
N∑
j=1

aij,τC
>
j R
−1
j Cj)(Aτ−1)>. (20)

Notice that ∆1 ≥ 0, we need to show ∆2 > 0. Let %min = argmin% aij,% > 0. Ac-
tually, by global observability assumption and positive definitness of Ri,∀i ∈ V , it not
hard to verify that

∑k̄
τ=1 β

1−τAτ−1(
∑N
j=1 aij,τC

>
j R
−1
j Cj)(Aτ−1)> is positive definite if

k̄ > %min +m. The result is concluded. �
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Remark 4.4. It should be pointed out that Theorem 4.3 rely on collective observable
condition, which has broader application compare with local observable condition. It also
should noting that algorithm proposed in this paper without projection step is consistent
with the results [17], where it is shown that collective observability is indeed to design
distributed estimation algorithm. In [2], a distributed estimation algorithm obtained by
covariance intersection scheme, in which covariance matrix inversion is needed to obtain
state estimate. Our proposed algorithm does not need inverse operation, which has the
benefit of low computational complexity.

Another important feature of proposed algorithm is the convergence results. We give
the convergence result in the following theorem.

Theorem 4.5. (Convergence) Under Assumption 2.4 and 2.5, the error dynamics for
Algorithm 1 is exponentially bounded in mean square and bounded with probability one
for some k̄ > 0.

P r o o f . Based on Lemma 2.1, the error term satisfies

‖ei,k+1‖2 ≤ ‖ẽi,k+1‖2 = ‖
N∑
j=1

aij ε̃j,k+1‖2≤
N∑
j=1

aij‖ε̃j,k+1‖2. (21)

The last inequality caused by Jenson’s inequality.
We define the following Lyapunov function

Vk(ek) =
N∑
i=1

e>i,kP
−1
i,k ei,k. (22)

In what follows, we show that Vk(ek) satisfies Lemma 4.1, which leads to the conclusion.
By Theorem 4.3, there exists a time instance k̄ > 0, such that Π < Pi,k < Πi,

∀i ∈ V and k > k̄, where Π is the solution of the centralized filter. Assume that
pIm≤Pi,k ≤ p̄iIm, we have

N∑
i=1

1
p̄i
‖ei,k‖2≤Vk(ek)≤

N∑
i=1

1
p
‖ei,k‖2, (23)

which satisfies (13). for k > k̄ one has

Vk+1(ek+1) =
N∑
i=1

e>i,k+1P
−1
i,k+1ei,k+1 (24)

≤
N∑
i=1

ẽ>i,k+1P
−1
i,k+1ẽi,k+1 (25)

≤
N∑
i=1

 N∑
j=1

aij ε̃j,k+1

> P−1
i,k+1

 N∑
j=1

aij ε̃j,k+1

 (26)
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≤
N∑
i=1

N∑
j=1

aij ε̃
>
j,k+1P

−1
i,k+1ε̃j,k+1. (27)

The last inequality caused by the fact that(
N∑
i=1

nimi

)>
M

(
N∑
i=1

nimi

)
≤

N∑
i=1

nim
>
i Mmi,

for a positive scale N , a set of non-negative weight {ni}Ni=1,
∑N
i=1 ni = 1, a set of vectors

mi and a positive definite matrix M . By changing the summation order, one has

Vk+1(ek+1) ≤
N∑
i=1

ε̃>i,k+1

 N∑
j=1

aijP
−1
i,k+1

 ε̃i,k+1 (28)

≤
N∑
i=1

ε̃>i,k+1

(
aiiP

−1
i,k+1

)
ε̃i,k+1 (29)

≤
N∑
i=1

ε̃>i,k+1P̃
−1
i,k+1ε̃i,k+1. (30)

Notice that ε̃i,k+1 = (Im −Ki,k+1Ci)Aei,k −Ki,k+1vi,k+1 + (Im −Ki,k+1Ci)wk, and
recalling the white noise property and taking expectation on Vk+1(ek+1), one has

E{Vk+1(ek+1)}

≤ E{
N∑
i=1

e>i,kF
>
i,k+1P̃

−1
i,k+1Fi,k+1ei,k + v>i,k+1K

>
i,k+1P̃

−1
i,k+1Ki,k+1vi,k+1

+w>k F
>
i,k+1P̃

−1
i,k+1Fi,k+1wk}, (31)

where Fi,k+1 = (Im−Ki,k+1Ci)A. Similar with Lemma 3.3 in [21], there exists a positive
scale δi, such that

E{v>i,k+1K
>
i,k+1P̃

−1
i,k+1Ki,k+1vi,k+1 + w>k F

>
i,k+1P̃

−1
i,k+1Fi,k+1wk} < δi. (32)

One can express P̃i,k+1 as follows,

P̃i,k+1 = Fi,k+1APi,kA
>F>i,k+1 +Ki,k+1RiK

>
i,k+1 + Fi,k+1QF

>
i,k+1. (33)

Denote Qi,k+1 = Fi,k+1QF
>
i,k+1, and notice Q > 0, we have Qi,k+1 ≥ 0. By remark 3.2,

one has

‖Ki,k ‖≤
ρ̄ici
ri

. (34)

Since Ri > 0, combining (33) and (34), one can obtain

P̃i,k+1 ≥ Fi,k+1(Pi,k + F−1
i,k+1Qi,k+1F

−>
i,k+1)F>i,k+1 ≥ Fi,k+1(Pi,k +

q

ā2
Im)F>i,k+1.

(35)
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Notice that Pi,k is bounded for k > k̄, thus P̄i,k is also bounded for k > k̄. Denote
ρ
i
Im < P̄i,k < ρ̄iIm. Taking inverse of both side of (35), multiplying from left and right

with F>i,k+1 and Fi,k+1, and then taking expectation operator, we obtain

E{F>i,k+1P̃
−1
i,k+1Fi,k+1} ≤ (1 +

q

ρ̄iā2
)−1P−1

i,k . (36)

Substituting (32) and (36) into (31) yield

E{Vk+1(ek+1)} ≤ E{
N∑
i=1

(1 +
q

ρ̄iā2
)−1e>i,kP

−1
i,k ei,k +

N∑
i=1

δi (37)

=
N∑
i=1

(1− αi)e>i,kP−1
i,k ei,k +

N∑
i=1

δi, (38)

where 0 < αi < 1, and (1−αi) = (1 + q
ρ̄iā2 )−1. Equation (37) can be written as follows,

E{Vk+1(ek+1)} ≤ (1− α)Vk(ek) + δ, (39)

where ᾱ = min{α1, α2, . . . , αN}, and δ̄ =
∑N
i=1 δi. Thus, the conclusion follows. �

Remark 4.6. From the proof of Theorem 4.5, the stochastic stability of Algorithm 1
can be guaranteed for any k > k̄. Different with [2, 20], which showed the asymptotic
stability of the error dynamics (without noise terms), we show the stochastic stability
of the error dynamics. Note that the stochastic stability studied in [21] was not for
constraint and distributed case. It also should be noticed that the information requires
to exchange is the local estimation pair (εi,k, P̃i,k), and it can reduce the use of network
bandwidth.

In what follows, we study the distributed filter with linear equality constraints as a
special case, which can be written in the following form:

Dkxk = dk, (40)

where Dk ∈ Rs×m is constraint matrix, dk ∈ Rs, and s is the number of constraints.
Suppose that Dk is of full rank. If Dk is not of full rank, then we have redundant
constraints. In this case, we can remove the linearly dependent rows from Dk until Dk

is of full rank.
Denote X = {x|Dkx = dk}, which is clearly a convex set. Thus, we can project

the local unconstrained estimate onto X. For each individual agent, we can obtain the
constrained estimate by projection as follows:

x̂i,k+1 = x̃i,k+1 −D>k+1(Dk+1D
>
k+1)−1(Dk+1x̃i,k+1 − dk+1), (41)

where x̃i,k+1 is the estimate obtained by the consensus step. Therefore, we have the
following result.
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Corollary 4.7. Under Assumptions 1 and 2, the error dynamics of the Algorithm 1 with
constraints (40) is exponentially bounded in mean square and bounded with probability
one for some k > k̄. Moreover, the constrained estimate is

x̂i,k+1 = x̃i,k+1 −D>k+1(Dk+1D
>
k+1)−1(Dk+1x̃i,k+1 − dk+1).

Clearly, Corollaries 4.7 can easily be applied to the linear state inequality constraints
Dkxk ≤ dk. If the estimation by the consensus step satisfies the inequality constraints
(i. e., Dkx̃i,k ≤ dk), then the projected estimation x̂i,k and consensus estimation x̃i,k will
be the same. Otherwise, the solutions of linear inequality constraints can be obtained
by projection the consensus estimation onto Dkxk = dk.

Above discussions are restrict to linear time-invariant dynamics (3) and observation
model (5). Considering the following nonlinear time-invariant dynamics and observation
model,

xk+1 = f(xk) + wk, (42)
yi,k = hi(xk) + vi,k. (43)

The algorithm 1 can be applied to nonlinear case by linearizing about current state
estimate. The detail of distributed nonlinear filtering design can be found in [11]. The
linearizion lead to the case with Ak and Ci,k being the Jacobian of the partial derivatives
of f(xk) and hi(xk) w.r.t x. Thus, we can obtain the following linear time-varying model,

xk+1 = Akxk + wk, (44)
yi,k = Ci,kxk + vi,k. (45)

From the proof of Theorem 4.3, it is not hard to check that Pi,k is bounded, if Ak
is nonsingular. However, under the same assumptions, it is not easy to obtain the
convergence property due to the time-varing Ak and Ci,k.

5. SIMULATIONS

In this section, we illustrate the proposed algorithms by some numerical simulations. We
compare the estimation performances of the proposed estimator with the CIDKF in [2]
and the CBDKF in [17] without constraints. CIDKF is a fusion-based distributed esti-
mation algorithm, in which the consensus estimates obtained by covariance intersection
sheme. CBDKF is achieved by consensus on eatimates and covariance matrix.

Consider a network with n = 6 agents to track a target that moves along a line
with a constant velocity. The topology of the network is shown in Figure 1. The target
dynamics is given by the following equation

xk+1 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

xk + wk, (46)

where T is the sampling period, which is chosen as T = 1s. Assume that the position
of the target can be measured by each agent, i. e., the first two components of xk. The
last two components of xk can be treated as the velocity along different directions.
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A1 A2 A3

A4A5A6

Fig. 1. Topology of the multi-agent network.

Denote xk = [xk(1), xk(2), xk(3), xk(4)]>. Then the measurement matrix of different
agent are

C1 =
[
1 0 0 0

]
, C2 =

[
0 1 0 0

]
, C3 =

[
0 1 0 0

]
, (47)

C4 =
[
1 0 0 0

]
, C5 =

[
0 1 0 0

]
, C6 =

[
1 0 0 0

]
. (48)

Notice that each agent is not observable, but the collective (A,C) is observable, where
C = [C>1 , . . . , C

>
6 ]>.

As stated in [24], the vehicle may be travelling off-road, or on an unknown road,
where the problem is unconstrained. Most of the time it may be traveling along a given
road, where the estimation problem is constrained. Here we consider that the target
is travelling on a road with a heading of η, which means tan η = xk(2)

xk(1) = xk(4)
xk(3) . Then

matrix D and vector d can be written as:

D =
[
1 − tan η 0 0
0 0 1 − tan η

]
d =

[
0 0

]> (49)

Take η = 60 deg and Q = diag(0.1, 0.1, 0.1, 0.1). Denote e0 = [5, 5, 0.3, 0.3]>,
x0 = [0, 0, tan η, 1]>, and initial conditions by agent i is set to xi,k = x0 + (−1)iie0,
R1 = diag(90, 90),R2 = diag(80, 80), R3 = diag(70, 70), R4 = diag(75, 75), R5 =
diag(85, 85), R6 = diag(95, 95).

We consider the total mean square estimation errors (TMSEE), which is widely used
to indicate the performance of the estimator, which is defined as

TMSEEk =
1
N

N∑
i=1

E(x̂i,k − xk)>(x̂i,k − xk).

In both cases, 200 times independent Monte Carlo simulations are carried out to show the
estimation performance. Figure 2 shows the TMSEE of Algorithm 1 and unconstrained
CIDKF in [2] and compare to the CBDKF in [17], and Tr(P ) = 1

N

∑N
i Tr(Pi). It

can be seen that the constrained estimation by Algorithm 1 is more accurate than the
unconstrained CIDKF and CBDKF. Therefore, for this example based on the constraint
information, the proposed CKF with the constraints outperforms unconstrained CIDKF
and CBDKF.
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Fig. 3. Performance of agents in Algorithm 1. (a), (b), (c) and (d)

represent the estimation error of xk(1), xk(2), xk(3) and xk(4),

respectively.

6. CONCLUSIONS

Distributed estimation based on the consensus strategy with state constraints was pro-
posed in this paper. A fully distributed algorithm was proposed. Under collective
observability and connectivity assumptions, the convergence of the proposed algorithms
was verified, and the conditions for the corresponding stability were given. Moreover, it
was shown that the information of additional state constraints is useful to improve the
performance of distributed estimators.
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