Kybernetika 53 no. 3, 383-393, 2017

Generalized convexities related to aggregation operators of fuzzy sets

Susana Díaz, Esteban Induráin, Vladimír Janiš, Juan Vicente Llinares and Susana MontesDOI: 10.14736/kyb-2017-3-0383

Abstract:

We analyze the existence of fuzzy sets of a universe that are convex with respect to certain particular classes of fusion operators that merge two fuzzy sets. In addition, we study aggregation operators that preserve various classes of generalized convexity on fuzzy sets. We focus our study on fuzzy subsets of the real line, so that given a mapping $F: [0,1] \times [0,1] \rightarrow [0,1]$, a fuzzy subset, say $X$, of the real line is said to be $F$-convex if for any $x, y, z \in \mathbb{R}$ such that $x \le y \le z$, it holds that $\mu_X(y) \ge F(\mu_X(x),\mu_X(z))$, where $\mu_X: \mathbb{R} \rightarrow [0,1]$ stands here for the membership function that defines the fuzzy set $X$. We study the existence of such sets paying attention to different classes of aggregation operators (that is, the corresponding functions $F$, as above), and preserving $F$-convexity under aggregation of fuzzy sets. Among those typical classes, triangular norms $T$ will be analyzed, giving rise to the concept of norm convexity or $T$-convexity, as a particular case of $F$-convexity. Other different kinds of generalized convexities will also be discussed as a by-product.

Keywords:

fuzzy sets, triangular norms, aggregation functions, convexity and its generalizations, fusion operators

Classification:

03E72, 26A51

References:

  1. E. Ammar and J. Metz: On fuzzy convexity and parametric fuzzy optimization. Fuzzy Sets and Systems 49 (1992), 135-141.   DOI:10.1016/0165-0114(92)90319-y
  2. E. F. Beckenbach: Generalized convex functions. Bull. Amer. Math. Soc. 43 (1937), 363-371.   DOI:10.1090/s0002-9904-1937-06549-9
  3. Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores and R. Osuna-Gómez: A note on generalized convexity for fuzzy mappings through a linear ordering. Fuzzy Sets and Systems 231 (2013), 70-83.   DOI:10.1016/j.fss.2013.07.001
  4. S. Díaz S., E. Induráin, V. Janiš and S. Montes: Aggregation of convex intuitionistic fuzzy sets. Inform. Sci. 308 (2015), 61-71.   DOI:10.1016/j.ins.2015.03.003
  5. J. Dugundji: Topology. Allyn and Bacon, Boston 1966.   CrossRef
  6. A. Froda: Sur la Distribution des Propriétés de Voisinage des Fonctions de Variables Réelles. Thèse, Hermann, Paris 1929.   CrossRef
  7. M. Grabisch, J.-L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Encyclopedia of Mathematics and its Applications, Cambridge University Press 2009.   DOI:10.1017/cbo9781139644150
  8. Ch. D. Horvath: Contractibility and generalized convexity. J. Math. Anal. Appl. 156 (1991), 2, 341-357.   DOI:10.1016/0022-247x(91)90402-l
  9. T. Iglesias, I. Montes, V. Janiš and S. Montes: $T$-convexity for lattice-valued fuzzy sets. In: Proc. ESTYLF Conference, 2012.   CrossRef
  10. V. Janiš, P. Král' and M. Renčová: Aggregation operators preserving quasiconvexity. Inform. Sci. 228 (2013), 37-44.   DOI:10.1016/j.ins.2012.12.003
  11. V. Janiš, S. Montes and T. Iglesias: Aggregation of weakly quasi-convex fuzzy sets. In: Communications in Computer and Information Science: 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU 2012, Catania 2012, pp. 353-359.   DOI:10.1007/978-3-642-31718-7_37
  12. X.-W. Liu and D. He: Equivalent conditions of generalized convex fuzzy mappings. The Scientific World Journal 2014 (2014), 1-5.   DOI:10.1155/2014/412534
  13. J. V. Llinares: Abstract convexity, some relations and applications. Optimization 51 (2002), 6, 797-818.   DOI:10.1080/0233193021000015587
  14. S. Saminger-Platz, R. Mesiar and U. Bodenhofer: Domination of aggregation operators and preservation of transitivity. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 10(2002), Suppl., 11-35.   DOI:10.1142/s0218488502001806
  15. S. Saminger-Platz, R. Mesiar and D. Dubois: Aggregation operators and commuting. IEEE Trans. Fuzzy Systems 15 (2007), 6, 1032-1045.   DOI:10.1109/tfuzz.2006.890687
  16. Y. R. Syau: Some properties of weakly convex fuzzy mappings. Fuzzy Sets and Systems 123 (2001), 203-207.   DOI:10.1016/s0165-0114(00)00090-7
  17. S.-Y. Wu and W.-H. Cheng: A note on fuzzy convexity. Appl. Math. Lett. 17 (2004), 1124-1133.   DOI:10.1016/j.aml.2003.11.003
  18. X.-H. Yuan and E. S. Lee: The definition of convex fuzzy set. Comp. Math. Appl. 47 (2004), 1, 101-113.   DOI:10.1016/s0898-1221(04)90009-0
  19. L. A. Zadeh: Fuzzy sets. Inform. Control 8 (1965), 338-353.   DOI:10.1016/s0019-9958(65)90241-x