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We analyze the existence of fuzzy sets of a universe that are convex with respect to cer-
tain particular classes of fusion operators that merge two fuzzy sets. In addition, we study
aggregation operators that preserve various classes of generalized convexity on fuzzy sets.

We focus our study on fuzzy subsets of the real line, so that given a mapping F : [0, 1] ×
[0, 1]→ [0, 1], a fuzzy subset, say X, of the real line is said to be F -convex if for any x, y, z ∈ R
such that x ≤ y ≤ z, it holds that µX(y) ≥ F (µX(x), µX(z)), where µX : R → [0, 1] stands
here for the membership function that defines the fuzzy set X.

We study the existence of such sets paying attention to different classes of aggregation
operators (that is, the corresponding functions F , as above), and preserving F -convexity under
aggregation of fuzzy sets. Among those typical classes, triangular norms T will be analyzed,
giving rise to the concept of norm convexity or T -convexity, as a particular case of F -convexity.

Other different kinds of generalized convexities will also be discussed as a by-product.
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1. INTRODUCTION

Convexity, as one of the most important notions in Geometry, has been studied thor-
oughly from different points of view and has been generalized in different ways. One of
the most important generalizations is based on its crucial property, namely, convexity
is preserved under set intersection. Based on that property, systems of subsets of a
given set, that define an structure called a “generalized convexity” have been defined
and studied in depth in [13] (see also [2, 3, 4, 8, 12, 17, 18]).

Our aim is to study convexity for fuzzy sets keeping in mind the classical geometrical
interpretation of convex sets in an Euclidean space (e.g: the real plane, the real space,
etc.), where for each pair of points of a convex set it holds true that the whole line
segment that joins them also belongs to that set. However, for fuzzy sets we have to
specify the notion of membership to a set. The unifying idea, in our considerations and
approach in this manuscript, will be the fact that the grade of membership for the points
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on a line segment that joints two points depends on the grade of memberships of those
given two points, both of them being, obviously, the endpoints of the line segment.

We will pay attention to the problem of characterizing the existence of such fuzzy
sets, depending on bivariate functions given a priori. Furthermore, we will also analyze
conditions under which suitable bivariate functions create a generalized convexity. We
will formulate our main results not only for the intersection of fuzzy sets, but for an
arbitrary aggregation of fuzzy sets as well.

2. PRELIMINARY CONCEPTS AND RESULTS CONCERNING
DIFFERENT KINDS OF ABSTRACT CONVEXITIES ON FUZZY SETS

We start by recalling the standard definition of a fuzzy set.

Definition 2.1. (Zadeh [19]) Let X be a nonempty set, usually called the universe.
A fuzzy set A in X is defined by means of a map µA : X → [0, 1]. The map µA is said
to be the membership function (or indicator) of A.

The support of A is the crisp set Supp(A) = {t ∈ X : µA(t) 6= 0} ⊆ X, whereas the
core of A is the crisp set Cor(A) = {t ∈ X : µA(t) = 1} ⊆ X. The fuzzy set A is said
to be normal provided that it has nonempty core.

Given α ∈ (0, 1], the crisp subset of X defined by Aα = {t ∈ X : µA(t) ≥ α} is said
to be the α-cut (level set) of the fuzzy set A.

In the literature that deals with fuzzy sets, perhaps the most common definition for
the concept of a convexity (as a matter of fact, usually called “quasi-convexity”) has
been introduced in [1] as follows:

Definition 2.2. Let X be a linear space. A fuzzy subset A of the universe X is said
to be quasi-convex if for all x, y ∈ X, λ ∈ [0, 1] it holds true that µA(λx+ (1− λ)y) ≥
min{µA(x), µA(y)}, where µA stands here for the membership function of the fuzzy
set A.

Notice that the literal transcription of the usual convexity condition that comes from
the crisp case, namely µA(λx+(1−λ)y) ≥ λµA(x)+(1−λ)µA(y) is not suitable for fuzzy
sets for at least two reasons. On the one hand, the addition that appears on the right
side of the inequality above could fail to make sense when working on lattice-valued fuzzy
sets, where such operation is not defined (in general). On the other hand, the class of
fuzzy sets that fulfill an inequality as the one given before, does not coincide, in general,
with the class of the fuzzy sets whose α-cuts are always convex. It is straightforward to
see that the aforementioned notion of quasi-convexity has none of these drawbacks.

In models arising in fuzzy logic, the minimum represents the classical conjunction.
From this point of view Definition 2.2 can be read as the statement – if x and y are in
the fuzzy set A then any point between them is also in A. However, if we use a different
model for the conjunction, then the connective and is represented by some triangular
norm. This leads to the notion of T-convexity or convexity with respect to a triangular
norm T , discussed later.

Another similar concept may by inspired by ideas from [16]. Here the notion of a
weakly convex fuzzy set has been defined in the following way:
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Definition 2.3. A fuzzy subset A of a linear space X is said to be weakly quasi-
convex if for all x, y ∈ suppµA there exists λ ∈ (0, 1) such that µA(λx + (1 − λ)y) ≥
min{µA(x), µA(y)}.

The condition of weak quasi-convexity is mild, not too restrictive (see [11]). However,
its underlying idea can be developed further. Roughly speaking, we bear in mind that
the value of the membership function at an “inner point” may depend on the values
that it takes at the “endpoints”. This can be interpreted, defined and/or understood
in a more general way than the (more restrictive) one introduced in Definition 2.2 and
Definition 2.3.

As it has already been mentioned, we will deal with systems preserving convexity,
thus we recall the definition of a generalized convexity from [13].

Definition 2.4. A system C of subsets of the universe X for which ∅ and X belong to
C and C is closed under arbitrary intersections is a generalized convexity on the given
set X.

As we will work with fuzzy sets, the system of fuzzy subsets of the universe fulfilling
the properties from Definition 2.4 we will also denote as a generalized convexity on X.

The notion of a generalized convexity is perhaps too wide. Observe, for instance,
that any topology τ defined on the universe X immediately gives rise to a generalized
convexity, after considering the class C of τ -closed subsets of X. Remember that given a
topology τ on a set X, the intersection of any family of τ -closed subsets is also τ -closed,
so that in this situation C is indeed closed under arbitrary intersections.

Obviously, not every generalized convexity C can be interpreted as the class of closed
subsets of a topology τ . For this to happen we would need that the family C is not
only stable under arbitrary intersections, but, in addition, it should also be stable under
finite unions.

Example 2.5. LetX = [0, 1] be the unit interval of the real line. Let C = {∅, X}
⋃
{[0, a] :

0 ≤ a ≤ 1}. This family C is actually the class of τ -closed sets of the topology τ on
X = [0, 1] defined as τ = {∅, [0, 1]}

⋃
{(a, 1] : 0 ≤ a ≤ 1}.

Now consider that class C′ = {∅, X}
⋃
{{a} : 0 ≤ a ≤ 1}

⋃
{[a, b] : 0 ≤ a < b ≤ 1}.

This second family C′ also defines a generalized convexity on X = [0, 1]. However, it fails
to be the family of closed subsets of a topology on X, because, for instance [0, 1

4 ]∪ [ 34 , 1]
does not lie in C′.

3. CONVEXITY WITH RESPECT TO TRIANGULAR NORMS
AND AGGREGATION OPERATORS IN TWO VARIABLES

The notion of quasi-convexity has been widely studied and applied. However, it could
still be too restrictive in several situations, especially in frameworks coming from fuzzy
logic. In those contexts, it is typical to find models in which a triangular norm (t-norm,
for short) other than the minimum is used. By this reason, the notion of convexity with
respect to triangular norms (or T - convexity, for short) was launched in [9], as follows:
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Definition 3.1. Let R be the set of all real numbers and let T be a t-norm. A fuzzy
subset A of R is said to be convex with respect to the t-norm T (or T -convex , for short)
if for all x, y ∈ R, λ ∈ [0, 1] it holds that µA(λx+ (1− λ)y) ≥ T (µA(x), µA(y)).

Notice that here, the triangular norm T has been assumed to play the role of the
minimum. In this Definition 3.1, T could be any triangular norm. Nevertheless, both
concepts, namely quasi-convexity and T -convexity are close and deeply related. In fact,
they coincide in the case of normal fuzzy sets (see Definition 2.1 above) as it is proven
in the next proposition.

Proposition 3.2. Let R be the set of all real numbers, let A be its fuzzy subset. If
A is quasi-convex, then it is T -convex for any t-norm T . Moreover, if A is normal, the
converse also holds true.

P r o o f . Since the minimum t-norm is the biggest triangular norm, we have that
T ≤ min holds true for any t-norm T . Therefore, quasi-convexity trivially implies
T -convexity, for any triangular norm T . Conversely, if A is normal, then there exists at
least one element a ∈ R such that µA(a) = 1. Thus, for any pair x, y ∈ R, x < y and
any its linear combination, that is, λx+ (1− λ)y, it follows that x ≤ λx+ (1− λ)y ≤ a
or, alternatively, a ≤ λx+ (1−λ)y ≤ y. In the former case we have µA(λx+ (1−λ)y) ≥
T (µA(x), µA(a)) = µA(x), in the latter one µA(λx + (1 − λ)y) ≥ T (µA(a), µA(y)) =
µA(y). So, we conclude that µA(λx+ (1− λ)y) ≥ min{µA(x), µA(y)}. �

While T -convexity may reflect the use of a particular t-norm T playing the role of
the conjunction in a certain fuzzy logic model, notice that none of the special properties
of a triangular norm has been mentioned in Definition 3.1. Indeed, only one of such
classical properties has been used in the proof of Proposition 3.2. This suggests the
study of convexity in an even more general form, in which we will introduce a further
generalization of the concept of convexity as regards a t-norm T (also known as T -
convexity).

The following results are stated for fuzzy subsets of the real line. However, they could
be easily generalized for fuzzy subsets where the universe is the n-dimensional real space
Rn.

Definition 3.3. Let F : [0, 1]2 → [0, 1] be an arbitrary bivariate mapping. A fuzzy
subset A of the real line is said to be convex with respect to the bivariate map F (or
F -convex, for short) if for each x, y, z ∈ R such that x ≤ y ≤ z it holds true that
µA(y) ≥ F (µA(x), µA(z)), where µA is the membership function of the fuzzy set A.

Similarly to Definition 2.3 we can also here take a linear combination of the points
x, z in place of y.

Clearly for F (α, β) = min{α, β} we have the usual quasi-convexity, while by replacing
F by a triangular norm T we obtain the notion of T -convexity introduced above.

Putting y = x and y = z in Definition 3.3 we obtain that F should fulfill the in-
equalities F (α, β) ≤ α and F (α, β) ≤ β, hence F ≤ min. This provides the following
lemma:
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Lemma 3.4. If there is at least one fuzzy set convex with respect to F , then F ≤ min.

Thus, in the rest of the paper we will consider only mappings F bounded from above
by the minimum.

As a comment we may add that even in case that we require the convexity condition
µA(y) ≥ F (µA(x), µA(z)) only for x < y < z, we do not obtain any more convex map-
pings for F > min, as the inequality µA(y) > min{µA(x), µA(z)} leads to discontinuity
at one of the points x, z. Hence the mapping fulfilling such inequality should have more
than countably many discontinuity points, what is a contradiction to Froda’s theorem
(see [6]).

Example 3.5. Consider the fuzzy set A whose membership function µA is given as
follows:

µA(x) =

{
1
2 (x− 1)2 + 1

2 , x ∈ [0, 2],
0, x ∈ R \ [0, 2].

This is an F -convex fuzzy subset of the real line, where F (α, β) = 1
2 min{α, β}. Clearly

the fuzzy set A is neither quasi-convex nor T -convex for any t-norm T , since µA(1) =
1
2 6≥ T (µA(0), µA(1)) = T (1, 1) = 1 holds true for any t-norm T .

In the sequel, for a fixed mapping F : [0, 1]2 → [0, 1] let us denote by CF the system
of all F -convex fuzzy sets. Clearly for F ≤ min at least the fuzzy set µA = 0 belongs to
CF , because, in such case F (0, 0) = 0.

In order to study generalized convexities from now on we will work only with bivariate
mappings F with the property F (α, β) ≤ min{α, β} (0 ≤ α, β ≤ 1). Considering F
as an aggregation function, we restrict ourselves to those maps that are conjunctive
(see [7]).

From the Definition 3.3 it is also clear that given two bivariate maps F,G such that
or all α, β ∈ [0, 1] it holds true that F (α, β) ≤ G(α, β), then CG ⊆ CF . Furthermore, we
can see that the extreme cases are obtained whenever F (α, β) = 1 for all α, β ∈ [0, 1],
so that CF = {0R, 1R}, as well as for F (α, β) = 0 for all α, β ∈ [0, 1], so that CF = F(X)
(the system of all fuzzy subsets of X). Observe also that, for F (α, β) = min{α, β} the
set CF is exactly the system of all quasi-convex fuzzy subsets of R.

Perhaps the most important property of classical convex sets is that they create a gen-
eralized convexity system, or, in other words, convexity is preserved under intersections.
Bearing this in mind, we are also interested in conditions under which an intersection of
F -convex fuzzy sets is again an F -convex fuzzy set. We will analyze this problem not
only for intersections (represented by triangular norms), but also (and more generally)
for arbitrary aggregations of fuzzy sets.

As usually, by a (binary) aggregation function on [0, 1] we will understand a mapping
A : [0, 1]2 → [0, 1] such that A(0, 0) = 0, A(1, 1) = 1 and, in addition, A is monotone in
both variables. By an aggregation of fuzzy sets A1, A2 whose membership functions are,
respectively, µA1 and µA2 we understand the fuzzy set B whose membership function is
µB(x) = A(µA1(x), µA2(x)). We usually denote it as follows: µB = A(µA1 , µA2).
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To formulate our following result we recall the notion of domination for real valued
mappings of two variables. For more details on both domination and aggregation see
[14, 15].

Definition 3.6. Let F,G : [0, 1]2 → [0, 1] denote two arbitrary bivariate mappings.
Then we say that F dominates G (F � G) if for any α1, α2, β1, β2 ∈ [0, 1] it holds true
that

F (G(α1, β1), G(α2, β2)) ≥ G(F (α1, α2), F (β1, β2)).

The next proposition provides a sufficient and necessary condition for the preservation
of convexity as regards a bivariate mapping F . The idea of the proof is based on similar
consideration used in [10].

Proposition 3.7. Let F : [0, 1]2 → [0, 1] be an arbitrary mapping, let A be a binary
aggregation function on [0, 1]. Then the following are equivalent:

1. A(µA1 , µA2) is F -convex for any F -convex fuzzy subsets A1, A2 of the real line,

2. A dominates F .

P r o o f . Let F : [0, 1]2 → [0, 1] be a mapping, let A be an arbitrary binary aggregation
function on the unit interval. Since throughout this proof we will work with F -convex
subsets of the real line, due to the result already stated in Lemma 3.4 we will assume
that F (α, β) ≤ min{α, β} (0 ≤ α, β ≤ 1).

First we suppose that for any F -convex fuzzy subsets A1, A2 of R their aggregation
function of membership, namely A(µA1 , µA2) is F -convex. Thus, let α1, α2, β1, β2 ∈
[0, 1]. Consider a fixed interval [a, b] ⊆ R, and the following fuzzy sets A1, A2 such that

µA1(x) =


α1, x = a,

F (α1, α2), x ∈ (a, b),
α2, x = b,

µA2(x) =


β1, x = a,

F (β1, β2), x ∈ (a, b),
β2 x = b

and µA1(x) = µA2(x) = 0 for x ∈ R \ [a, b].
We observe that both µA1 and µA1 are F -convex (here we make use of the assumption

F ≤ min). Hence the fuzzy set A(µA1 , µA2) is also F -convex. In other words, for any
z ∈ (a, b) it follows that

A(µA1 , µA2)(z) ≥ F (A(µA1 , µA2)(a), A(µA1 , µA2)(b))

which is equivalent to

A(µA1(z), µA2(z)) ≥ F (A(µA1(a), µA2(a)), A(µA1(b), µA2(b)))

or
A(F (α1, α2), F (β1, β2)) ≥ F (A(α1, β1), A(α2, β2))

and thus A� F .
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To prove the converse assume that A � F . Let A1, A2 be arbitrary F -convex fuzzy
subsets of the real line. Take x, y, z ∈ R such that x < y < z. Then we have that

µA1(y) ≥ F (µA1(x), µA1(z)) and µA2(y) ≥ F (µA2(x), µA2(z))

and from the monotonicity of the map A we obtain

A(µA1 , µA2)(y) ≥ A(F (µA1(x), µA1(z)), F (µA2(x), µA2(z)))

≥ F (A(µA1(x), µA2(x)), A(µA1(z), µA2(z)) = F (A(µA1 , µA2)(x), A(µA1 , µA2)(z)).

Therefore the aggregation of µA1 and µA2 is also F -convex. �

This Proposition 3.7 shows in fact that, for a bivariate mapping F accomplishing
that F � min, the family CF is a generalized convexity. Moreover, it also shows that
the intersection of a finite collection of T -convex fuzzy sets based on the t-norm T is
again T -convex, as the minimum t-norm dominates any other t-norm (see [14]).

Another similar condition to achieve the same conclusion is the monotonicity of F ,
as shown in the next proposition.

Proposition 3.8. CF is a generalized convexity if and only if F : [0, 1]2 → [0, 1] is
increasing.

P r o o f . In the case in which we assume that the bivariate mapping F is increasing the
proof just consists in checking that the inequality

F (min{α1, α2},min{β1, β2}) ≤ min{F (α1, β1), F (α2, β2)}

holds true for a small number of possible mutual positions of α1, α2, β1, β2 in the unit
interval.

Assume, by contradiction, that F fails to be increasing. Then there are α1, α2, β1, β2 ∈
[0, 1] such that α1 ≤ β1, α2 ≤ β2, but F (α1, α2) > F (β1, β2). Take an arbitrary interval
[a, b] ∈ R and the fuzzy sets A1 and SA2 whose membership functions are

µA1(x) =


α1, x = a,

F (α1, α2), x ∈ (a, b),
α2, x = b,

µA2(x) =


β1, x = a,

F (β1, β2), x ∈ (a, b),
β2 x = b

and µA1(x) = µA2(x) = 0 for x ∈ R \ [a, b]. We may notice that both A1 and A2 are
F -convex fuzzy sets. However, their intersection is the fuzzy set defined by means of the
membership function

(µA1 ∩ µA2)(x) =


α1, x = a,

F (β1, β2), x ∈ (a, b),
α2, x = b,

which is not F -convex. The reason is that, for any y ∈ (a, b), we have that

(µA1 ∩ µA2)(y) = F (β1, β2) 6≥ F (α1, α2) = F ((µA1 ∩ µA2)(a), (µA1 ∩ µA2)(b)).
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We conclude that CF is not a generalized convexity. �

Finally, in the next proposition we explain the relationship between F -convex fuzzy
sets and crisp convex sets. (Here we consider crisp sets as a special case of fuzzy sets).

Proposition 3.9. Let C denote the system of all crisp convex subsets of the real line
R and let F = {F : [0, 1]2 → [0, 1];F (1, 1) > 0}, F being a bivariate map. Then
C = ∩F∈F (CF ∩ 2R).

P r o o f . Suppose C ∈ C. Let F ∈ F . We will show that C is F -convex. To do so, take
x, y, z ∈ R, x ≤ y ≤ z.

If C(y) = 0, then from its convexity at least one of the values C(x), C(z) should
be zero. Hence F (C(x), C(z)) = 0 too. If C(y) = 1 then the inequality C(x) ≥
F (C(x), C(z)) is fulfilled for any F ∈ F . Thus C is F -convex for any F .

Now let C be an F -convex crisp set for any F ∈ F . Suppose C is not convex. Then
there are x, y, z ∈ R with x < y < z, and such that C(x) = C(z) = 1, C(y) = 0.
Consider a bivariate mapping F ∈ F . From the F -convexity of C we have

0 = C(y) ≥ F (C(x), C(z)) = F (1, 1) > 0

which is a contradiction. This concludes the proof. �

4. FINAL COMMENTS, DISCUSSION AND SUGGESTIONS FOR FURTHER RE-
SEARCH

A former suggestion for a further development of these ideas could be trying to avoid
working with linear spaces, and defining generalized convexities (see [13]) on a nonempty
set U , called universe, as suitable mappings f : U×U×[0, 1]→ U that accomplish certain
conditions (e.g.: f(x, y, α) = f(y, x, 1 − α) for every x, y ∈ U and α ∈ [0, 1]) so that
f(x, y, α) could play the role of the point “α · x+ (1− α) · y” that is typical in the case
in which U is a linear space.

Another suggestion could be trying to work with some more general kinds of fuzzy
sets, as, for instance, those in which the membership function takes values in a lattice,
instead of in the unit interval [0, 1].

In a new complementary direction, already pointed out in Section 2, an appealing
idea to be explored in further pieces of research could be the analysis of aggregation
maps that preserve some kind of topology defined on the fuzzy sets of the real line.
Notice that a topology can be defined (see e.g. [5] as well as the remark after Definition
2.4 in Section 2) by means of the family of closed sets. The intersection of an arbitrary
family of closed sets should also be closed, whereas the union of two closed sets should
also be a closed set. Here, the property relative to the intersection is similar to the one
we have used in the previous section to first define and then deal with and analyze the
concept of a generalized convexity. What we need in addition in a topological context
is the additional restriction of the aggregation maps preserving also the fact that the
union of two closed sets must also be closed. It seems a priori that this kind of studies
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could be tackled following similar steps to the ones considered in this manuscript when
working with generalized convexities.

At this stage, another problem to be explored in next future is the following: even
in case when some generalized convexities defined by suitable maps could actually give
rise to a topology, it may happen that the topology is discrete. To see this, let X
be a nonempty set, and let F : [0, 1]2 → [0, 1] be an upper semicontinuous function
(αi ↘ α0, βi ↘ β0 ⇒ F (αi, βi) → F (α0, β0)) such that F (0, x) = F (x, 0) = 0 for all
x ∈ X and let N : X2 × [0, 1]→ X, such that N(x, x, λ) = x for all x ∈ X,λ ∈ [0, 1].

Denote

CFN = {f : X → X; f(N(x, y, λ)) ≥ F (f(x), f(y)) for all x, y ∈ X, λ ∈ [0, 1]}.

For the case N(x, y, λ) = λx + (1 − λ)y (in a linear space) and F = min we obtain
the set of all convex fuzzy subsets of X. Some properties of such N and arbitrary F
have been studied in the previous Section 3. Now we will consider arbitrary N and F
and, by C∗FN we denote the collection of all finite unions (using standard fuzzy union,
i.e. the maximum) of fuzzy sets from CFN . We will show that C∗FN can be considered
as a base for the system of closed sets for some fuzzy topology on X.

By χA we will denote the characteristic function of A.

Proposition 4.1. There is a topology on X for which C∗FN is the base for the system
of all closed sets.

P r o o f . It is enough to show two properties of C∗FN :

i) ∧f∈C∗
F N

= ∅,

ii) for all f, g ∈ C∗FN the mapping f ∨ g is a meet of some subfamily from C∗FN

To show property (i), take x0, y0 ∈ X,x0 6= y0. It is easy to see that f = χ{x} ∈ CFN
for any F and N : If N(x, y, λ) = x0, then

f(N(x, y, λ)) = 1 ≥ F (f(x), f(y))

for arbitrary F . If N(x, y, λ) 6= x0, then at least one of the elements x, y is different from
x0 and on the right hand side of the inequality we have either F (1, 0) or F (0, 1) which
is zero in both cases and the inequality is fulfilled. As the meet of these characteristic
functions is the function identically equal to zero, the first property is proved.

The property (ii) is obvious, as for f, g ∈ C∗FN the mapping f ∨ g is an element of
C∗FN . �

Let us denote by TFN the topology on X, for which C∗FN is a base of closed sets. In
the following we will deal with separation axioms for the topological space (X, TFN ).
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Proposition 4.2. (X, TFN ) is a T1 space.

P r o o f . We have to show that singletons are closed. However, from the proof of
Proposition 4.1 it follows, that singletons are member of the base for closed sets, and
therefore closed. �

The problem with the topology introduced as above is the following: Take the fuzzy
subsets of a real line and some x ∈ R. Then for F ≤ min and any mean N there
is χ(−∞,a), χ(a,∞) ∈ CFN and thus they are closed in TFN . So, their complements
χ[a,∞), χ(−∞,a] are open and so is their meet. But this is a singleton and if singletons
are open, we come to a discrete topology .

Thus, to conclude, we suggest as a new line for further research to analyze smaller
families that also give rise to a generalized convexity and a topology defined by means
of the class of closed sets, but such that the resulting topology is not the discrete one.
In the previous discussion – namely in Proposition 4.1 and Proposition 4.2 above – the
class is perhaps “too big”, so that we might try to consider some suitable subclass.
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[4] S. Dı́az S., E. Induráin, V. Janǐs, and S. Montes: Aggregation of convex intuitionistic
fuzzy sets. Inform. Sci. 308 (2015), 61–71. DOI:10.1016/j.ins.2015.03.003

[5] J. Dugundji: Topology. Allyn and Bacon, Boston 1966.

[6] A. Froda: Sur la Distribution des Propriétés de Voisinage des Fonctions de Variables
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