Kybernetika 53 no. 1, 99-112, 2017

Interval fuzzy matrix equations

Emília Draženská and Helena MyškováDOI: 10.14736/kyb-2017-1-0099


This paper deals with the solvability of interval matrix equations in fuzzy algebra. Fuzzy algebra is the algebraic structure in which the classical addition and multiplication are replaced by maximum and minimum, respectively. The notation $\mbf{A} \otimes X\otimes \mbf{C}=\mbf{B}$, where $\mbf{A}, \mbf{B}, \mbf{C}$ are given interval matrices and $X$ is an unknown matrix, represents an interval system of matrix equations. We can define several types of solvability of interval fuzzy matrix equations. In this paper, we shall deal with four of them. We define the tolerance, weak tolerance, left-weak tolerance, and right-weak tolerance solvability and provide polynomial algorithms for checking them.


fuzzy algebra, interval matrix equation, tolerance solvability, weak tolerance solvability


15A06, 65G30


  1. A. Asse, P. Mangin and D. Witlaeys: Assisted diagnosis using fuzzy information. NAFIPS 2 Congress, Schenectudy 1983.   DOI:10.1109/ifsa-nafips.2013.6608528
  2. P. Butkovič and M. Fiedler: Tropical tensor product and beyond. \url{}   CrossRef
  3. K. Cechlárová: Solutions of interval systems in fuzzy algebra. In: Proc. SOR 2001 (V. Rupnik, L.Zadnik-Stirn, and S. Drobne, eds.), Preddvor, pp. 321-326.   CrossRef
  4. K.Cechlárová and R. A. Cuninghame-Green: Interval systems of max-separable linear equations. Lin. Algebra Appl. 340 (2002), 215-224.   DOI:10.1016/s0024-3795(01)00405-0
  5. R. A. Cuninghame-Green: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems 1966, Springer, Berlin 1979.   DOI:10.1007/978-3-642-48708-8
  6. M. Gavalec and J. Plavka: Monotone interval eigenproblem in fuzzy algebra. Kybernetika 46 (2010), 3, 387-396.   CrossRef
  7. J. Kreinovich, A. Lakeyev, J. Rohn and P. Kahl: Computational Complexity of Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht 1998.   DOI:10.1007/978-1-4757-2793-7
  8. H. Myšková: Interval systems of max-separable linear equations. Lin. Algebra Appl. 403 (2005), 263-272.   DOI:10.1016/j.laa.2005.02.011
  9. H. Myšková: Control solvability of interval systems of max-separable linear equations. Lin. Algebra Appl. 416 (2006), 215-223.   DOI:10.1016/j.laa.2005.11.008
  10. H. Myšková: On an algorithm for testing T4 solvability of fuzzy interval systems. Kybernetika 48 (2012), 5, 924-938.   CrossRef
  11. H. Myšková: Interval max-plus matrix equations. Lin. Algebra Appl. 492 (2016), 111-127.   DOI:10.1016/j.laa.2015.10.031
  12. A. Di Nola, S. Salvatore, W. Pedrycz and E. Sanchez: Fuzzy Relation Equations and Their Applications to Knowledge Engineering. Kluwer Academic Publishers, Dordrecht 1989.   DOI:10.1007/978-94-017-1650-5
  13. J. Plavka: On the $O(n^3)$ algorithm for checking the strong robustness of interval fuzzy matrices. Discrete Appl. Math. 160 (2012), 640-647.   DOI:10.1016/j.dam.2011.11.010
  14. J. Rohn: Systems of Interval Linear Equations and Inequalities (Rectangular Case). Technical Report 875, Institute of Computer Science, Academy of Sciences of the Czech Republic, Praha 2002.   CrossRef
  15. J. Rohn: Complexity of some linear problems with interval data. Reliable Computing 3 (1997), 315-323.   DOI:10.1023/a:1009987227018
  16. E. Sanchez: Medical diagnosis and composite relations. In: Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, R. R. Yager, eds.), North-Holland, Amsterdam-New York 1979, pp. 437-444.   CrossRef
  17. T. Terano and Y. Tsukamoto: Failure diagnosis by using fuzzy logic. In: Proc. IEEE Conference on Decision Control, New Orleans 1977, pp. 1390-1395.   DOI:10.1109/cdc.1977.271521
  18. L. A. Zadeh: Toward a theory of fuzzy systems. In: Aspects of Network and Systems Theory (R. E. Kalman and N. De Claris, eds.), Hold, Rinehart and Winston, New York 1971, pp. 209-245.   CrossRef
  19. K. Zimmermann: Extremální algebra. Ekonomicko-matematická laboratoř Ekonomického ústavu ČSAV, Praha 1976.   CrossRef