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INTERVAL FUZZY MATRIX EQUATIONS

Eḿılia Draženská and Helena Myšková

This paper deals with the solvability of interval matrix equations in fuzzy algebra. Fuzzy
algebra is the algebraic structure in which the classical addition and multiplication are replaced
by maximum and minimum, respectively.

The notation A ⊗ X ⊗ C = B, where A, B, C are given interval matrices and X is an
unknown matrix, represents an interval system of matrix equations. We can define several
types of solvability of interval fuzzy matrix equations. In this paper, we shall deal with four of
them. We define the tolerance, weak tolerance, left-weak tolerance, and right-weak tolerance
solvability and provide polynomial algorithms for checking them.

Keywords: fuzzy algebra, interval matrix equation, tolerance solvability, weak tolerance
solvability
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1. MOTIVATION

Fuzzy equations have found a broad area of applications in causal models which empha-
size relationships between input and output variables. They are used in diagnosis models
[1, 12, 16, 17] or models of nondeterministic systems [18]. Diagnostic models are par-
ticularly important because they cope with the uncertainty in many real-life situations
concerning either medical diagnoses or diagnoses of technical devices. In the simplest
formulation we are faced with a space of symptoms and a space of faults. Elements of
faults are related with elements of symptoms by means of a fuzzy relation. Usually, the
stronger the relationship between the symptom and a fault, the higher is the value of
the corresponding argument. The solution of the fuzzy relational equation of the form
A ⊗ x = b, where A is a matrix, b and x are vectors of suitable dimensions and clas-
sical addition and multiplication operations are replaced by maximum and minimum,
provides a maximal set of symptoms that produce the given fault.

The solvability of the systems of fuzzy linear equations is well reviewed. In this paper,
we shall deal with the solvability of fuzzy matrix equations of the form A⊗X ⊗C = B,
where A, B, and C are given matrices of suitable sizes and X is an unknown matrix. In
the following example we will show one of possible applications.
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Example 1.1. Let us consider a situation, in which passengers from places P1, P2, P3,
and P4 want to transfer to holiday destinations D1, D2, and D3. Different transporta-
tion means provide transporting passengers from places P1, P2, P3, and P4 to airport
terminals T1 and T2 (See Figure 1). We assume that the connection between Pi and Tl

is possible only via one of the check points Q1, Q2, and Q3. On Figure 1 there is an
arrow (Pi Qj) if there exists the road from Pi to Qj and there is an arrow (Tl Dk) if
terminal Tl handles the passengers traveling to destination Dk (i = 1, 2, 3, 4, j = 1, 2, 3,
k = 1, 2, 3, l = 1, 2). The symbols along arrows represent the capacities of the corre-
sponding connections.
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Fig. 1. Transportation system.

Denote by aij (clk) the capacity of the road from Pi to Qj (from Tl to Dk). If Qj

is linked with Tl by a road with the capacity xjl, then the capacity of the connection
between Pi and Dk via Qj using terminal Tl is equal to min{aij , xjl, clk}.

Suppose that the number of passengers traveling from place Pi to destination Dk

is denoted by bik. To ensure the transportation for all passengers from P1 to their
destinations the following equations must be satisfied:

max
n

min{a11, x11, c11}, min{a12, x21, c11}
o

= b11,

max
n

min{a11, x11, c12}, min{a12, x21, c12}, min{a12, x22, c22}
o

= b12,

max
n

min{a11, x12, c23}, min{a11, x11, c13}, min{a12, x21, c13}, min{a12, x22, c23}
o

= b13.

Similar equalities must be satisfied to ensure the transportation for all passengers from
P2, P3 and P4 to their destinations.

In general, suppose that there are m places P1, P2, . . . , Pm, n transfer points
Q1, Q2, . . . , Qn, s terminals T1, T2, . . . , Ts, and r destinations D1, D2, . . . , Dr. If there
is no road from Pi to Qj (from Tl to Dk), we put aij = 0 (clk = 0). Our task is
to choose the appropriate capacities xjl for any j ∈ N = {1, 2, . . . , n}, and for any
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l ∈ S = {1, 2, . . . , s} such that the maximum capacity of the road from Pi to Dk is equal
to a given number bik for any i ∈ M = {1, 2, . . . ,m} and for any k ∈ R = {1, 2, . . . , r},
i. e.,

max
j∈N, l∈S

min{aij , xjl, clk} = bik. (1)

A certain disadvantage of any necessary and sufficient condition for the solvability
of (1) stems from the fact that it only indicates the existence or non-existence of the
solution but does not indicate any action to be taken to increase the degree of solvability.
However, it happens quite often in modelling real situations that the obtained system
turns out to be unsolvable.

One of the possible methods of restoring the solvability is to replace the exact input
values by intervals of possible values. The result of the substitution is so-called interval
fuzzy matrix equation. The theory of interval computations, in particular of interval
systems in the classical algebra is already quite developed, see e. g. the monograph [7]
or [14, 15]. Interval systems of linear equations in fuzzy algebra have been studied in
[3, 4, 8, 9]. In this paper, we deal with the solvability of interval fuzzy matrix equations.
We define the tolerance, right-weak tolerance, left-weak tolerance, and weak tolerance
solvability and provide polynomial algorithms for checking them.

2. PRELIMINARIES

Fuzzy algebra is the triple (I,⊕,⊗), where I = [O, I] is a linear ordered set with the
least element O, the greatest element I, and two binary operations a ⊕ b = max{a, b}
and a⊗ b = min{a, b}.

Denote by M, N, R, and S the index sets {1, 2, . . . ,m}, {1, 2, . . . , n}, {1, 2, . . . , r},
and {1, 2, . . . , s}, respectively. The set of all m × n matrices over I is denoted by
I(m, n) and the set of all column n vectors over I by I(n).
Operations ⊕ and ⊗ are extended to matrices and vectors in the same way as the
operations in the classical algebra. We will consider the ordering ≤ on the sets I(m, n)
and I(n) defined as follows:

• for A, C ∈ I(m, n) : A ≤ C if aij ≤ cij for all i ∈M, j ∈ N ,

• for x, y ∈ I(n) : x ≤ y if xj ≤ yj for all j ∈ N .

We will use the monotonicity of ⊗, which means that for any A, C ∈ I(m, n) and for
any B, D ∈ I(n, s) the implication

if A ≤ C and B ≤ D then A⊗B ≤ C ⊗D

holds true.
Let A ∈ I(m, n) and b ∈ I(m). In fuzzy algebra, we can write the system of equations

in the matrix form
A⊗ x = b. (2)

The crucial role for the solvability of system (2) in fuzzy algebra is played by the principal
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solution of system (2), defined by

x∗j (A, b) = min
i∈M
{bi : aij > bi} (3)

for any j ∈ N , where min ∅ = I.
The following theorem describes the importance of the principal solution for the

solvability of (2).

Theorem 2.1. (Cuninghame-Green [5], Zimmermann [19]) Let A ∈ I(m, n) and b ∈
I(m) be given.

(i) If A⊗ x = b for x ∈ I(n), then x ≤ x∗(A, b).

(ii) A⊗ x∗(A, b) ≤ b.

(iii) The system A⊗ x = b is solvable if and only if x∗(A, b) is its solution.

The properties of a principal solution are expressed in the following assertions.

Lemma 2.2. (Cechlárová [3]) Let A ∈ I(m, n) and b, d ∈ I(m) be given and let b ≤ d.
Then x∗(A, b) ≤ x∗(A, d).

Lemma 2.3. (Myšková [8]) Let b ∈ I(m) and C, D ∈ I(m, n) be given and let D ≤ C.
Then x∗(C, b) ≤ x∗(D, b).

Lemma 2.4. Let A ∈ I(m, n), b ∈ I(m) and c ∈ I. Then

min{x∗j (A⊗ c, b), c} = min{x∗j (A, b), c}

for any j ∈ N .

P r o o f . In the case that x∗j (A, b) ≥ c we have x∗j (A⊗c, b) ≥ c, according to Lemma 2.3,
so both minima are equal to c. In the second case x∗j (A, b) = bi < c for some i ∈M , which
follows that aij > bi. Then aij ⊗ c > bi and consequently x∗j (A ⊗ c, b) ≤ bi = x∗j (A, b).
Together with x∗j (A⊗ c, b) ≥ x∗j (A, b) we obtain the equality. �

3. MATRIX EQUATIONS AND TENSOR PRODUCT

Let A ∈ I(m, n), B ∈ I(m, r), X ∈ I(n, s) and C ∈ I(s, r) be given matrices. It is easy
to see that [A ⊗ X ⊗ C]ik = max

j∈N, l∈S
min{aij , xjl, clk}. Hence, we can (1) write in the

form
A⊗X ⊗ C = B. (4)

In the following, we shall deal with the solvability of (4). We shall use the notion of
tensor product.
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Definition 3.1. Let A = (aij) be an m×n matrix and let B = (bij) be an r×s matrix.
The tensor product of A and B is the following mr × ns matrix:

A � B =


A⊗ b11 A⊗ b12 . . . A⊗ b1s

A⊗ b21 A⊗ b22 . . . A⊗ b2s

. . . . . . . . . . . .
A⊗ br1 A⊗ br2 . . . A⊗ brs

 .

Let X ∈ B(n, s). Denote by vec (X) the vector (X1, X2, . . . , Xs)>, where Xl is lth
column of matrix X. Similarly we define vec (B).

Theorem 3.2. Matrix equation

(A1 ⊗X ⊗ C1)⊕ (A2 ⊗X ⊗ C2)⊕ · · · ⊕ (Ar ⊗X ⊗ Cr) = B, (5)

where Ai, Ci, and B are matrices of compatible sizes, is equivalent to the vector-matrix
system

(A1 � C>1 ⊕A2 � C>2 ⊕ . . . Ar � C>r )⊗ vec (X) = vec (B). (6)

P r o o f . The proof is equivalent to the similar one in the max-plus algebra, which is
given in [2]. �

For r = 1, the matrix equation in the form (5) takes the form A⊗X ⊗ C = B.
Denote by X∗(A, B,C) =

(
x∗jl(A, B,C)

)
the matrix defined as follows

x∗jl(A, B, C) = min
k∈R
{x∗j (A⊗ clk, Bk)}. (7)

We shall call the matrix X∗(A, B,C) a principal matrix solution of (4). The following
theorem expresses the properties of X∗(A, B,C) and gives the necessary and sufficient
condition for the solvability of (4).

Theorem 3.3. Let A ∈ I(m, n), B ∈ I(m, r) and C ∈ I(m, n).

(i) If A⊗X ⊗ C = B for X ∈ I(n, s), then X ≤ X∗(A, B,C).

(ii) A⊗X∗(A, B, C)⊗ C ≤ B.

(iii) The matrix equation A ⊗X ⊗ C = B is solvable if and only if X∗(A, B,C) is its
solution.

P r o o f . The consequence of Theorem 3.2 is that interval fuzzy matrix equation (4) is
solvable if and only if the vector-matrix equation

(A � C>)⊗ vec (X) = vec (B) (8)

is solvable. By Theorem 2.1 (iii) the solvability of (8) is equivalent to the equality

(A � C>)⊗ x∗(A � C>, vec (B)) = vec (B).
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We will prove that x∗(A � C>, vec (B)) = vec (X∗(A, B,C)). For this reason, we
rewrite (8) into the following form:

A⊗ c11 A⊗ c21 . . . A⊗ cs1

A⊗ c12 A⊗ c22 . . . A⊗ cs2

. . . . . . . . . . . .
A⊗ c1r A⊗ c2r . . . A⊗ csr

⊗


X1

X2

...
Xs

 =


B1

B2

...
Br.


Using (3) we have

x∗jl = min
{

min
i∈M
{bi1 : aij ⊗ cl1 > bi1}, min

i∈M
{bi2 : aij ⊗ cl2 > bi2}, . . . ,

. . . min
i∈M
{bir : aij ⊗ clr > bir}

}
= min

{
x∗j (A⊗ cl1, B1), x∗j (A⊗ cl2, B2), . . . , x∗j (A⊗ clr, Br)

}
= min

k∈R
x∗j (A⊗ clk, Bk).

Hence the proof of parts (i), (ii) and (iii) follows directly from Theorem 2.1. �

Remark 3.4. Equality (7) can be written in the form

X∗(A, B,C) = (X∗1 (A, B, C), X∗2 (A, B,C), . . . , X∗s (A, B,C)),

where
X∗l (A, B,C) = min

k∈R
x∗(A⊗ clk, Bk). (9)

Lemma 3.5. Let A, A(1), A(2) ∈ I(m, n), B, B(1), B(2) ∈ I(m, r) and C, C(1), C(2) ∈
I(s, r).

(i) If A(2) ≤ A(1) then X∗(A(1)B, C) ≤ X∗(A(2)B, C).

(ii) If B(1) ≤ B(2) then X∗(A, B(1), C) ≤ X∗(A, B(2), C).

(iii) If C(2) ≤ C(1) then X∗(A, B,C(1)) ≤ X∗(A, B,C(2)).

P r o o f .

(i) Since A(2) ⊗ clk ≤ A(1) ⊗ clk, by Lemma 2.3 we obtain the inequality
x∗j (A(1)⊗clk, Bk) ≤ x∗j (A(2)⊗clk, Bk) for any k ∈ R which implies x∗jl(A

(1), B,C) ≤
x∗jl(A

(2), B,C) for any j ∈ N, l ∈ S.

(ii) By Lemma 2.2 we have x∗j (A⊗ clk, B
(1)
k ) ≤ x∗j (A⊗ clk, B

(2)
k ) for any k ∈ R which

implies x∗jl(A, B(1), C) ≤ x∗jl(A, B(2), C) for any j ∈ N, l ∈ S.

(iii) By Lemma 2.3 we have x∗j (A ⊗ c
(1)
lk , Bk) ≤ x∗j (A ⊗ c

(2)
lk , Bk) for any k ∈ R which

implies x∗jl(A, B,C(1)) ≤ x∗jl(A, B,C(2)) for any j ∈ N, l ∈ S.

�
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Lemma 3.6. Let A(1), A(2) ∈ I(m, n), B(1), B(2) ∈ I(m, r), and C(1), C(2) ∈ I(s, r).
The system of matrix inequalities of the form

A(1) ⊗X ⊗ C(1) ≤ B(1), (10)

A(2) ⊗X ⊗ C(2) ≥ B(2) (11)

is solvable if and only if

A(2) ⊗X∗(A(1), B(1), C(1))⊗ C(2) ≥ B(2). (12)

P r o o f . According to Theorem 3.3 (ii) the matrix X∗(A(1), B(1), C(1)) satisfies in-
equality (10). If (12) is satisfied, then the matrix X∗(A(1), B(1), C(1)) satisfies the
inequality (11), too, so the system of inequalities (10), (11) is solvable with solution
X∗(A(1), B(1), C(1)).

For the converse implication suppose that the system of inequalities (10), (11)
is solvable and a matrix Y is its solution. It follows from A(1) ⊗ Y ⊗ C(1) ≤ B(1)

that there exists a matrix D ∈ I(m, r) such that A(1) ⊗ Y ⊗ C(1) = D ≤ B(1). Accord-
ing to Theorem 3.3 (i) we have Y ≤ X∗(A(1), D, C(1)) ≤ X∗(A(1), B(1), C(1)), where the
last inequality follows from Lemma 3.5 (ii). We obtain

A(2) ⊗X∗(A(1), B(1), C(1))⊗ C(2) ≥ A(2) ⊗ Y ⊗ C(2) ≥ B(2).

Hence inequality (12) is satisfied. �

4. INTERVAL MATRIX EQUATIONS

Similarly to [8, 9, 13], we define interval matrices A, B, and C as follows:

A = [A, A] =
{

A ∈ I(m, n); A ≤ A ≤ A
}

,

B = [B, B] =
{

B ∈ I(m, r); B ≤ B ≤ B
}

,

C = [C, C] =
{

C ∈ I(s, r); C ≤ C ≤ C
}

.

Denote by
A⊗X ⊗C = B (13)

the set of all matrix equations of the form (4) such that A ∈ A, B ∈ B, and C ∈ C.
We call (13) an interval fuzzy matrix equation.

We shall think over the solvability of interval fuzzy matrix equation on the ground of
the solvability of matrix equations of the form (4) such that A ∈ A, B ∈ B, and C ∈ C.
We can define several types of solvability of an interval fuzzy matrix equation.

Let us return to Example 1.1. Suppose that we do not know exactly capacities of
connections from places Pi to check points Qj and the capacities of the flights from Tl to
Dk. We only know that they are from the given intervals of possible values. We want to
observe transportations capacities from Qj to Tl such that in each case all capacities of
connection from Pi to Dk will be in the given intervals of possible values. The existence
of such transportation times is called the tolerance solvability.
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4.1. Tolerance Solvability

Definition 4.1. A matrix X is called a tolerance solution of interval fuzzy matrix equa-
tion of the form (13) if for any A ∈ A and for any C ∈ C is A⊗X ⊗ C ∈ B.

Theorem 4.2. A matrix X is a tolerance solution of (13) if and only if it satisfies the
system of inequalities

A⊗X ⊗ C ≤ B, (14)

A⊗X ⊗ C ≥ B. (15)

P r o o f . A matrix X is a tolerance solution of (13) if for any A ∈ A and for any C ∈ C
the product A ⊗ X ⊗ C lies in B. This leads to the requirement for the validity of
the system of matrix inequalities B ≤ A ⊗ X ⊗ C ≤ B for any A ∈ A and for any
C ∈ C. The left inequality is satisfied for any A ∈ A and for any C ∈ C if and only
if A ⊗X ⊗ C ≥ B, i. e., inequality (15) holds. The right inequality is satisfied for any
A ∈ A and for any C ∈ C if and only if it holds for the matrices A and C, so (14) holds.

�

Definition 4.3. Interval fuzzy matrix equation of the form (13) is called tolerance solv-
able if there exists X ∈ I(n, s) such that X is a tolerance solution of (13).

Theorem 4.4. Interval fuzzy matrix equation of the form (13) is tolerance solvable if
and only if

A⊗X∗(A, B, C)⊗ C ≥ B. (16)

P r o o f . The tolerance solvability of (13) means that there exists a vector X ∈ I(n, s)
such that X is a tolerance solution. According to Theorem 4.2, it is equivalent to the
solvability of the system of inequalities (14), (15). Using Lemma 3.6 we obtain (16). �

The following theorem deals with the complexity of checking the tolerance solvability
of an interval fuzzy matrix equation. For the sake of simplicity, in the next theorem we
will suppose that m = r = s = n.

Theorem 4.5. There is an algorithm which decides whether the given interval fuzzy
matrix equation is tolerance solvable in O(n4) steps.

P r o o f . Checking the tolerance solvability is based on the verifying of inequality
(16). Since computing x∗(A⊗ clk, Bk) requires O(n2) arithmetic operations, computing
X∗l (A, B, C) by (9) for fixed l requires n · O(n2) = O(n3) arithmetic operation. Hence,
computing the matrix X∗(A, B, C) requires n ·O(n3) = O(n4) operations. Matrix multi-
plications need O(n3) arithmetic operations and checking matrix inequality (16) requires
O(n2) arithmetic operations.

Hence the total complexity of the algorithm for checking the tolerance solvability of
(13) is O(n4) + O(n3) + O(n2) = O(n4). �
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Example 4.6. Let I = [0, 10] and let

A =

 [1, 3] [5, 8] [3, 5]
[1, 2] [4, 6] [3, 4]
[2, 7] [2, 3] [4, 6]

 , B =

 [3, 5] [2, 5]
[3, 5] [4, 5]
[4, 6] [2, 6]

 , C =
(

[4, 6] [6, 7]
[3, 3] [3, 4]

)
.

We check whether the interval fuzzy matrix equation A ⊗ X ⊗ C = B is tolerance
solvable.

Solution:
We have

A⊗ c11 =

 3 6 5
2 6 4
6 3 6

 , A⊗ c12 =

 3 7 5
2 6 4
7 3 6

 ,

A⊗ c21 =

 3 3 3
2 3 3
3 3 3

 , A⊗ c22 =

 3 4 4
2 4 4
4 3 4

 .

We compute the principal matrix solution by (9):

X∗(A, B, C) =

0@min

8<:
0@ 10

5
10

1A ,

0@ 6
5
10

1A9=; , min

8<:
0@ 10

10
10

1A ,

0@ 10
10
10

1A9=;
1A =

0@ 6 10
5 10

10 10

1A .

We have to check inequality (16):

A⊗X∗(A, B, C)⊗ C =

 4 5
4 4
4 4

 ≥ B.

According to Theorem 4.4 the given interval fuzzy matrix equation is tolerance solvable.

4.2. One-side weak tolerance solvability

We define two types of one-side weak tolerance solvability.

Definition 4.7. Interval fuzzy matrix equation of the form (13) is called

(i) right-weakly tolerance solvable if for any C ∈ C there exists X ∈ I(n, s) such that
for any A ∈ A is A⊗X ⊗ C ∈ B,

(ii) left-weakly tolerance solvable if for any A ∈ A there exists X ∈ I(n, s) such that
for any C ∈ C is A⊗X ⊗ C ∈ B.

Lemma 4.8. Interval fuzzy matrix equation of the form (13) is

(i) right-weakly tolerance solvable if and only if for any C ∈ C holds the inequality

A⊗X∗(A, B, C)⊗ C ≥ B, (17)
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(ii) left-weakly tolerance solvable left-weakly tolerance solvable if and only if for any
A ∈ A holds the inequality

A⊗X∗(A, B, C)⊗ C ≥ B. (18)

P r o o f . (i) Let C ∈ C be arbitrary but fixed. The existence of X ∈ I(n, s) such that
A⊗X ⊗C ∈ [B, B] for any A ∈ A is equivalent to the tolerance solvability of the fuzzy
matrix equation with constant matrix C = C = C, which is, according to Theorem
4.4, equivalent to (17). Therefore, interval fuzzy matrix equation (13) is right-weakly
tolerance solvable if and only if inequality (17) is fulfilled for any matrix C ∈ C.

(ii) For a given matrix A ∈ A the existence of X ∈ I(n, s) such that A⊗X ⊗C ∈ B
for any C ∈ C is equivalent to the tolerance solvability of the fuzzy matrix equation
with constant matrix A = A = A, which is equivalent to (18). To ensure the left-weak
tolerance solvability, inequality (18) has to be satisfied for any matrix A ∈ A. �

Lemma 4.8 does not give an algorithm for checking the one-side weak tolerance solv-
ability. It follows from the definitions that the tolerance solvability implies the right-weak
and left-weak tolerance solvability. The converse implications may not be valid. In the
following we will prove that both types of the one-side weak tolerance solvability are
equivalent to the tolerance solvability in fuzzy algebra.

Theorem 4.9. The following assertions are equivalent:

(i) Interval fuzzy matrix equation of the form (13) is tolerance solvable.

(ii) Interval fuzzy matrix equation of the form (13) is right-weakly tolerance solvable.

(iii) Interval fuzzy matrix equation of the form (13) is left-weakly tolerance solvable.

P r o o f . As mentioned above the implications (i)⇒ (ii) and (i)⇒ (iii) are trivial. It is
sufficient to prove the implications (ii)⇒ (i) and (iii)⇒ (i).

I. (ii)⇒ (i): Suppose that an interval fuzzy matrix equation is not tolerance solvable.
It means that there exist i ∈M, and p ∈ R such that

[
A⊗X∗(A, B, C)⊗ C

]
ip

< bip.

Denote by C(p) the matrix with the following entries

c
(p)
lk =

{
clk for k = p, l ∈ S,
clk for k ∈ R, k 6= p, l ∈ S.

(19)

We will prove that[
A⊗X∗(A, B, C(p))⊗ C(p)

]
ip

=
[
A⊗X∗(A, B, C)⊗ C

]
ip

. (20)

We can rewrite the both sides of (20) as[
A⊗X∗(A, B, C(p))⊗ C(p)

]
ip

= max
j∈N, l∈S

min{aij , x
∗
jl(A, B, C(p)), c(p)

lp }
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and [
A⊗X∗(A, B, C)⊗ C

]
ip

= max
j∈N, l∈S

min{aij , x
∗
jl(A, B, C), clp}

We prove that

min{aij , x
∗
jl(A, B, C(p)), c(p)

lp } = min{aij , x
∗
jl(A, B, C), clp} (21)

for any j ∈ N, l ∈ S. The left-hand side of (21) is equal to

min{aij , x
∗
jl(A, B, C(p)), c(p)

lp } = min
{

aij , min
k 6=p

x∗j (A⊗ clk, Bk), x∗j (A⊗ clp, Bp), clp

}
and the right-hand side is equal to

min{aij , x
∗
jl(A, B, C), clp} = min

{
aij , min

k 6=p
x∗j (A⊗ clk, Bk), x∗j (A⊗ clp, Bp), clp

}
.

We shall prove that

min{x∗j (A⊗ clp, Bp), clp} = min{x∗j (A⊗ clp, Bp), clp}. (22)

According to Lemma 2.4 we obtain

min{x∗j (A⊗ clp, Bp), clp} = min{x∗j (A, Bp), clp}

and

min{x∗j (A⊗ clp, Bp), clp} = min{x∗j (A⊗ clp, Bp), clp, clp} = min{x∗j (A, Bp), clp}.

From the assumption and (20) we obtain
[
A ⊗X∗(A, B, C(p)) ⊗ C(p)

]
ip

< bip. Hence,

inequality (17) is not satisfied for the matrix C(p) and according to Lemma 4.8 (i) an
interval fuzzy matrix equation is not right-weakly tolerance solvable.

II. (iii)⇒ (i): To prove the converse implication let us suppose that there are q ∈M
and t ∈ R such that

[
A⊗X∗(A, B, C)⊗ C

]
qt

< bqt. Denote by A(q) the matrix with
the entries

a
(q)
ij =

{
aij for i = q, j ∈ N,
aij for i ∈M, i 6= q, j ∈ N.

(23)

We will prove that[
A(q) ⊗X∗(A(q), B, C)⊗ C

]
qt

=
[
A⊗X∗(A, B, C)⊗ C

]
qt

. (24)

The both sides of (24) can be rewritten as[
A(q) ⊗X∗(A(q), B, C)⊗ C

]
qt

= max
j∈N, l∈S

min{aqj , x
∗
jl(A

(q), B, C), clt}

and [
A⊗X∗(A, B, C)⊗ C

]
qt

= max
j∈N, l∈S

min{aqj , x
∗
jl(A, B, C), clt}.
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We prove that

min{aqj , x
∗
jl(A

(q), B, C), clt} = min{aqj , x
∗
jl(A, B, C), clt}

for any j ∈ N, l ∈ S. Let us remember that

x∗jl(A
(q), B, C) = min

{
min

k∈R,i 6=q
{bik : aij ⊗ clk > bik}, min

k∈R
{bqk : aqj ⊗ clk > bqk}

}
and

x∗jl(A, B, C) = min
{

min
k∈R,i 6=q

{bik : aij ⊗ clk > bik}, min
k∈R
{bqk : aqj ⊗ clk > bqk}

}
.

To prove (24), we show that

min
{

min
k∈R
{bqk : aqj ⊗ clk > bqk}, aqj

}
= min

{
min
k∈R
{bqk : aqj ⊗ clk > bqk}, aqj

}
. (25)

There are two possibilities: either {bqk : aqj ⊗ clk > bqk} = {bqk : aqj ⊗ clk > bqk} or
{bqk : aqj ⊗ clk > bqk} ( {bqk : aqj ⊗ clk > bqk}.

In the first case equality (25) trivially holds. In the second case denote by R∗ the set
R∗ = {k ∈ R : aqj ⊗ clk ≤ bqk ∧ aqj ⊗ clk > bqk}. Since for any k ∈ R∗ the inequality
aqj ≤ bqk holds, we obtain min{min

k∈R∗
bqk, aqj} = aqj . Hence, the right-hand side of (25)

is equal to

min
{

min
k∈R
{bqk : aqj⊗clk > bqk}, aqj

}
= min

{
min
k∈R
{bqk : aqj⊗clk > bqk}, aqj , min

k∈R∗
bqk

}
=

min
{

min
k∈R
{bqk : aqj ⊗ clk > bqk}, aqj

}
,

so equality (25) is satisfied. Since (24) is satisfied, from the assumption we obtain[
A(q) ⊗ X∗(A(q), B, C) ⊗ C

]
qt

< bqt. According to Lemma 4.8 (ii), an interval fuzzy
matrix equation is not left-weakly tolerance solvable. �

4.3. Weak tolerance solvability

Definition 4.10. Interval fuzzy matrix equation of the form (13) is called weakly tol-
erance solvable if for any A ∈ A and for any C ∈ C there exist X ∈ I(n, s) such that
A⊗X ⊗ C ∈ B.

Theorem 4.11. Interval fuzzy matrix equation of the form (13) is weakly tolerance
solvable if and only if it is tolerance solvable.

P r o o f . Suppose that (13) is weakly tolerance solvable. We obtain the following se-
quence of implications

(∀A ∈ A)(∀C ∈ C)(∃X ∈ I(n, s))A⊗X ⊗ C ∈ B
Th 4.9=⇒

(∀A ∈ A)(∃X ∈ I(n, s))(∀C ∈ C)A⊗X ⊗ C ∈ B
Th 4.9=⇒

(∃X ∈ I(n, s))(∀A ∈ A)(∀C ∈ C) A⊗X ⊗ C ∈ B,

hence (13) is tolerance solvable. The converse implication trivially holds. �
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Remark 4.12. Interval matrix equations in max-plus algebra have been studied in [11].
There is a similar condition for the tolerance solvability in max-plus and fuzzy algebra.
A significant difference is in the left-weak and right-weak tolerance solvability, which
are equivalent to the tolerance solvability in the fuzzy algebra, but not in the max-plus
algebra.

Remark 4.13. Suppose that interval matrix B is not a closed interval. If B is a left
open interval, then inequality (16) turns into inequality A⊗X∗(A, B, C)⊗C > B. If B
is a right open interval, then we have to add the inequality A⊗X∗(A, B, C)⊗ C < B.
In case that B is an open interval, we have to make both changes in Theorem 4.4. The
cases that the entries of interval matrices matrices A and C are not closed intervals
have to be studied separately.

5. CONCLUSION

In this paper, we dealt with the solvability of matrix equations in fuzzy algebra. Fuzzy
algebra is a useful tool for describing real situation in the economy and industry. In
Example 1.1, the values aij , xjl, and clk represent the capacities of corresponding con-
nections. In economics, those values may represent for example the financial costs for
the production or transporting of some products. In another possibility, aij represents
a measure of the preference of the property Pi of some object before the property Qj ,
similarly xjl (clk) represent a measure of the preference of the property Qj before the
property Tl (the property Tl before the property Dk).

In practice, the values aij and clk may depend on external conditions, so they are
from intervals of possible values. Due to this fact, it is significant to deal with fuzzy
matrix equations with interval data. We have studied four types of the solvability of
interval fuzzy matrix equation. We intend to deal with another solvability concepts in
further research.

(Received May 5, 2016)
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[8] H. Myšková: Interval systems of max-separable linear equations. Lin. Algebra Appl. 403
(2005), 263–272. DOI:10.1016/j.laa.2005.02.011
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