Kybernetika 52 no. 5, 785-790, 2016

Proving the characetrization of Archimedean copulas via Dini derivatives

Juan Fernández-Sánchez and Manuel Úbeda-FloresDOI: 10.14736/kyb-2016-5-0785


In this note we prove the characterization of the class of Archimedean copulas by using Dini derivatives.


Archimedean copula, Dini derivative, derived number


60E05, 62E10


  1. C. Alsina, M. J. Frank and B. Schweizer: Associative Functions: Triangular Norms and Copulas. World Scientific, Singapore 2006.   DOI:10.1142/9789812774200
  2. E. de Amo, M. Díaz Carrillo and J. Fernández Sánchez: Characterization of all copulas associated with non-continuous random variables. Fuzzy Sets Syst. 191 (2012), 103-112.   DOI:10.1016/j.fss.2011.10.005
  3. L. Berg and M. Krüppel: De Rahm's singular function and related functions. Z. Anal. Anw. 19 (2000), 227-237.   DOI:10.4171/zaa/947
  4. U. Cherubini, E. Luciano and W. Vecchiato: Copula Methods in Finance. Wiley Finance Series, John Wiley and Sons Ltd., Chichester 2004.   DOI:10.1002/9781118673331
  5. F. Durante and P. Jaworski: A new characterization of bivariate copulas. Comm. Statist. Theory Methods 39 (2010), 2901-2912.   DOI:10.1080/03610920903151459
  6. F. Durante and C. Sempi: Principles of Copula Theory. Chapman and Hall/CRC, London 2015.   DOI:10.1201/b18674
  7. C. Genest and J. MacKay: Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données. Canad. J. Statist. 14 (1986), 145-159.   DOI:10.2307/3314660
  8. J. W. Hagood and B. S. Thomson: Recovering a function from a Dini derivative. Amer. Math. Monthly 113 (2006), 34-46.   DOI:10.2307/27641835
  9. P. Jaworski, F. Durante, W. Härdle and T. Rychlik (editors): Copula Theory and its Applications. Lecture Notes in Statistics-Proceedings, Springer, Berlin-Heidelberg 2010.   DOI:10.1007/978-3-642-12465-5
  10. C. H. Ling: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212.   CrossRef
  11. S. Łojasiewicz: An Introduction to the Theory of Real Functions. Third Edition. A Wiley-Interscience Publication, John Wiley and Sons Ltd., Chichester 1988.   CrossRef
  12. A. J. McNeil and J. Nešlehová: Multivariate Archimedean copulas, $d$-monotone functions and $l_1$-norm symmetric distributions. Ann. Stat. 37 (2009), 3059-3097.   DOI:10.1214/07-aos556
  13. A. J. McNeil, R. Frey and P. Embrechts: Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, Princeton 2005.   CrossRef
  14. L. P. Natanson: Theory of Functions of a Real Variable. Vol. I, revised edition. Frederick Ungar Publishing, New York 1961.   CrossRef
  15. R. B. Nelsen: An Introduction to Copulas. Second Edition. Springer, New York 2006.   DOI:10.1007/0-387-28678-0
  16. B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North-Holland, New York 1983. Reprinted, Dover, Mineola NY, 2005.   CrossRef
  17. A. Sklar: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231.   CrossRef
  18. W. Wysocki: Characterizations of Archimedean n-copulas. Kybernetika 51 (2015), 212-230.   DOI:10.14736/kyb-2015-2-0212