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PROVING THE CHARACTERIZATION OF
ARCHIMEDEAN COPULAS VIA DINI DERIVATIVES
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In this note we prove the characterization of the class of Archimedean copulas by using Dini
derivatives.
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1. INTRODUCTION

Copulas are n-dimensional distribution functions that concentrate the probability mass
on [0, 1]™ and whose univariate margins are uniformly distributed on [0, 1]. A (bivariate)
copula is a function C': [0,1]*> — [0, 1] which satisfies:

(C1) the boundary conditions C(t,0) = C(0,t) = 0 and C(¢,1) = C(1,t) = ¢t for all
t€0,1];

(C2) the 2-increasing property, i.e., C(ug,vs) — C(ug,v1) — C(uy,v2) + Clug,v1) > 0
for all uy,ug,v1,vs in [0, 1] such that uy < up and vy < vs.

In particular, copulas are Lipschitz continuous functions in each variable with con-
stant 1.

The importance of copulas comes from Sklar’s Theorem [I7], which shows that the
joint distribution H of a pair of random variables and the corresponding marginal dis-
tributions F' and G are linked by a copula C' in the following manner: H(z,y) =
C(F(z),G(y)) for all z,y in [—o0,00]. If F and G are continuous, then the copula
is unique; otherwise, the copula is uniquely determined on Range F'xRange G [2]. For a
complete review on copulas and some of their applications, we refer to [6l, 9 [15].

Let ¢: [0,1] — [0, 00| be a continuous strictly decreasing function such that ¢(1) =
0, and let o= be the pseudo-inverse of ¢, i.e., p=U(z) = ! (min(¢(0),x)) for
x € [0,00], and consider the function given by

Cip(u,v) = N (p(u) + p(v)),  (u,0) € [0, 1) (1)

The following result provides a characterization of the function given by to be a cop-
ula [16].
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Theorem 1.1. The function C, given by is a copula if, and only if, ¢ is convex.

Copulas given by (|I) are called Archimedean — the name is due to a property of
associative operations [I0, [I5] — and ¢ is the generator of C,, — for another different
characterization of Archimedean copulas, see [I0]. Archimedean copulas became popular
since they model the dependence structure between risk factors, and are used in many
applications, such as finance, insurance, or reliability (see, for example, [4, [13]) due to
their simple forms and nice properties.

In [I8], the author provides three characterizations of n-dimensional Archimedean
copulas: algebraic, differential and diagonal. Our purpose in this note is to provide
a new proof of Theorem (Section 3) by using Dini derivatives, a known result of
Lebesgue from Real Analysis (Section 2) — which allow to reconstruct a function from
the Dini derivative DT f when this is finite — and a characterization of copulas given by
Jaworski and Durante [5].

2. PRELIMINARY RESULTS FROM REAL ANALYSIS

Derived numbers play an important role in several results on the differentiability of
monotone functions. We recall their definition [I4].

Definition 2.1. The number X (finite or infinite) is said to be a derived number of the
function f at the point xg if there exists a sequence hy, ha, hs, ... (h, # 0 for all n) such
that h,, — 0 and

i 4 @0+ hn) = f(zo)

n—oo hn

=\

Symbolically, we say A = Df(xg). If the (finite or infinite) derivative f’(x() exists at
the point zg, then it will be a derived number D f(x¢), and in this case, the function f
will have no other derived numbers at the point xg.

We note that in Definition [2.1] it is possible to use the term derived number to the
right by imposing h,, > 0.

There are some particularly important derived numbers, the Dini derivatives, whose
definition we recall now [I1].

Definition 2.2. Let f: [a,b] — R be a continuous function, with a < b, and let x be
a point in [a,b[. The limit

D+f(a:) = lim sup M
h—0+ h

is called the (rightside upper) Dini derivative of f at . When it is substituted lim sup
by lim inf, we obtain the (rightside lower) Dini derivative Dy f.

The following result provides conditions for which a function can be recovered as a
definite integral of one of its Dini derivatives [§].
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Lemma 2.3. If f is a continuous function that has a finite Dini derivative DV f(z) at
every point z of R, then

b
1)~ f(@) = [ D fa)do
for each interval [a, b].

Observe that, as an immediate consequence of Lemma we have that if DT f =0
then f is constant.

We understand a strictly increasing (decreasing) singular function as a continuous and
strictly increasing (decreasing) function with derivative zero almost everywhere. Since
the Dini derivatives of a decreasing function cannot be positive, Lemma [2.3|implies that
a strictly decreasing singular function on an interval has a dense set of points in which
DT f is equal to —co. Both Lemma and these last observations remain true if we
replace DV f by D, f. Furthermore, we have the following lemma, [3].

Lemma 2.4. If f is a strictly singular function, then the inverse f~! is also strictly
singular.

3. A NEW PROOF OF THE CHARACTERIZATION
OF ARCHIMEDEAN COPULAS

We begin this section with some additional notation. For every function K: [x1,z2] X
[y1,92] — R and every y € [y1,y2], let K, denote the function from [z1,z5] onto R
given by K,(z) = K(x,y).

The following result — whose proof can be found in [5] — provides a characterization
of copulas in terms of Dini derivatives.

Lemma 3.1. A function C: [0,1]2 — [0, 1] is a copula if, and only if, C satisfies (C1)
and the following conditions:

1. C is continuous;

2. there exists a countable set S C [0, 1] such that, for every u € [0, 1]\S, the following
conditions hold:

(a) DTC,(u) is finite for every v € [0,1];
(b) DTCy, (u) < DTC,,(u) whenever 0 < v; < wy < 1.

We are now in position to provide a new proof of Theorem|[L.T|by using Dini derivatives
and derived numbers — compare, for example, with the ones given in [Il [7, 12].

Proof of Theorem Suppose C, is a copula given by . Since ¢ is monotone,
we have that ¢ is derivable almost everywhere. Let u €]0, 1] be a point such that ¢'(u)
exists and ¢'(u) # 0, and suppose (C,), (u) # 0. By writing

(Cp)y (uth) = (Cyp), (W) _ (Co), (uth)—(Cp), (u) p(uth)—p(u)

h p(u+h) —p(u) h ’
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and by taking supremum limits when h — 07 in both sides, the existence of the derivative
of ¢ in u assures

D (Cy), (u) = X+ ¢ (u),
where A is the inverse of a derived number of ¢ at (C,), (u). To be precise, with
h = (Cy), (u+h) - (Cyp), (u), we get b — 0% for h — 0 — as C,, is non-decreasing —
and

y = iy Gl (D) = (Co) ) o (C), (k) — (Cp), (1)
o plut ) = plu) ot plut h) + (o) — [p(w) + 9(0)]
(Co), (uth) = (Cy), (u)
ot @ ((Co), (ut ) = ((C), (@)
e (Co), (ut h) = (Cy), (u)
ot @ ((Co), (@) +(Cp), (wt ) = (Cp), () — 2 ((C), ()

= limsup

b
= limsup ~
=0t ¢ ((Cp), (W) +h) =9 ((Cp), ()
1 1
Ce(@), @ HR) — e (€, ) P ((Co), ()
g h
+

From Lemma we have DT (C,,)
which implies

v, (W) DT (Cy), (u)aslongas0 < vy <wvp <1,
¢'(u) < ¢ (u)
Dy ((Cp),, )~ Diw ((Cp),, (W)

and therefore D¢ ((C’@)m (u)) <D,y ((Cxo)m (u)) — since ¢ is strictly decreasing —
i.e. Dy is increasing in ]0, uf.

We now prove that there exists a sequence {u,} — 1 asn — —+o0 such that ¢’ (u,) # 0
for every n. Suppose, on the contrary, this is not true, that is, we have ¢’(u) = 0 almost
everywhere in an interval [ag, 1] C [0, 1] and ¢ is not derivable in the rest of the points,
i.e. p is a strictly decreasing singular function. From Lemma we have that o1 is a
strictly decreasing singular function in [0, ¢(ag)]. In this case, there exists a set of real
points {z,,: n € N} such that {z,,} — 0 as n — +oo with D (¢™!) (z,,) = —oc.

Now, let z be a real point such that D (¢~!) (z) = —o0, and let u and v be two real
points such that ¢(u) 4+ ¢(v) = x, with u such that any derived number to the right of ¢
at u is different from 0 — we note that the existence of v and v is due to the continuity
of ¢ and as a consequence of the fact that the derived numbers to the right cannot be
greater than D .

Since (Cy,), verifies the Lipschitz condition with constant 1, we have

B-Dyp ! (p(u) + ¢(v) <1,

where f3 is a derived number to the right of ¢ at u. Since Dot (p(u) + p(v)) = —oc0
and 8 < 0, that upper bound is not possible, so we obtain a contradiction; therefore,
there exists a sequence {u,} — 1 as n — 400 such that ¢’'(u,) # 0 for every n.
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All this reasoning leads to the fact that D¢ is non-decreasing in |0, 1[. Therefore, if
s and s’ are two numbers in [0, 1] such that s > §’, from Lemma we have

(5 oo (5L )

2 2
s+s’

1 s 2
-1 </ D+go(t)dt—/
2 s-;s/ s/

and we conclude that ¢ is convex.
Conversely, we only need to follow the same steps backwards, which completes the
proof. O

N |

Dyp(t) dt) >0,
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