Kybernetika 52 no. 4, 607-628, 2016

Finite-time outer synchronization between two complex dynamical network with time delay and noise perturbation

Zhi-cai Ma, Yong-zheng Sun and Hong-jun ShiDOI: 10.14736/kyb-2016-4-0607


In this paper, the finite-time stochastic outer synchronization and generalized outer synchronization between two complex dynamic networks with time delay and noise perturbation are studied. Based on the finite-time stability theory, sufficient conditions for the finite-time outer synchronization are obtained. Numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of time delay and noise perturbation on the convergence time are also numerically demonstrated.


synchronization, time delay, noise perturbation, complex dynamic networks


65L99, 70K99


  1. A. Arenas, , J. Kurths, Y. Moreno and C. S. Zhou: Synchronization in complex networks. Phys. Rep. 469 (2008), 93-153.   DOI:10.1016/j.physrep.2008.09.002
  2. M. M. Asheghan, J. Míguez, M. T. Hamidi-Beheshti and M. S. Tavazoe: Robust outer synchronization between two complex networks with fractional order dynamics. Chaos 21 (2011), 033121.   DOI:10.1063/1.3629986
  3. A. L. Barabasi: Scal-free networks: a decade and beyond. Science 325 (2009), 412-413.   DOI:10.1126/science.1173299
  4. A. L. Barabasi and R. Albert: Emergence of scaling in random networks. Science 286 (1999), 509-512.   DOI:10.1126/science.286.5439.509
  5. S. P. Blat and D. S. Bernstein: Finite-time stability of continuous autonomous systems. SIAM. J. Control Optim. 38 (2000), 751-766.   DOI:10.1137/s0363012997321358
  6. W. L. Guo, F. Austin and S.H. Chen: Global synchronization of nonlinearly coupled complex networks with non-delayed and delayed coupling. Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1631-1639.   DOI:10.1016/j.cnsns.2009.06.016
  7. G. Hardy, J. Littlewood and G. Polya: Inequalities. Cambridge University Press 1988.   CrossRef
  8. B. Hauschildt, N. B. Jason, A. Balanov and E. Scholl: Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E 74 (2006), 051906.   DOI:10.1103/physreve.74.051906
  9. J. J. Huang, C. D. Li, T. W. Huang and X. He: Finite-time lag synchronization of delayed neural networks. Neurocomputing 139 (2013), 145-149.   DOI:10.1016/j.neucom.2014.02.050
  10. X. Q. Huang, W. Lin and B. Yang: Global finite-time synchronization of a class of uncertain nonlinear systems. Automatica 41 (2005), 881-888.   DOI:10.1016/j.automatica.2004.11.036
  11. Y. B. Kazanovich and R. M. Borisyuk: Synchronization in a neural network of phase oscillators with the central element. Biological Cybernetics 71 (1994), 177-185.   DOI:10.1007/s004220050080
  12. P. E. Kloeden and E. Platen: Numerical Solution of Stochastic Differential Equations. Springer, Heidelberg 1992.   DOI:10.1007/978-3-662-12616-5
  13. G. Korniss: Synchronization in weighted unccorrelated complex networks in a noisy environment: optimization and connections with transport efficiency. Phys. Rev. E 75 (2007), 051121.   DOI:10.1103/physreve.75.051121
  14. H. Y. Li, Y. A. Hu and R. Q. Wang: Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties. Kybernetika 49 (2013), 554-567.   CrossRef
  15. L. Li, J. Kurths, H. Peng, Y. Yang and Q. Luo: Exponentially asymptotic synchronization of uncertain complex time-delay dynamical networks. The European Physical Journal B 86 (2013), 1-9.   DOI:10.1140/epjb/e2013-30517-6
  16. W. Lin and G. R. Chen: Using white noise to enhance synchronization of coupled chaotic systems. Chaos 16 (2006), 013134.   DOI:10.1063/1.2183734
  17. J. H. Lü, X. H. Yu and G. R. Chen: Chaos synchronization of general complex dynamical networks. Physica A 334 (2004), 281-302.   DOI:10.1016/j.physa.2003.10.052
  18. V. Lynnyk and S. Čelikovský: On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption. Kybernetika 46 (2010), 1-18.   CrossRef
  19. J. Mei, M. H. Jiang, W. M. Xu and B. Wang: Finite-time synchronization control of complex dynamical networks with time delay. Commun. Nonlinear Sci. Numer. Simulat. 18 (2013), 2462-2478.   DOI:10.1016/j.cnsns.2012.11.009
  20. K. H. Nagail and H. Kori: Noise-induced synchronization of a large population of globally coupled nonidentical oscillators. Phys. Rev.E 81 (2010), 065202.   DOI:10.1103/physreve.81.065202
  21. L. M. Pecora and T. L. Carrol: Master stability functions for synchronized coupled system. Phys. Rev. Lett. 80 (1998), 2109-2112.   DOI:10.1103/physrevlett.80.2109
  22. W. G. Sun and S. X. Li: Generalized outer synchronization between two uncertain dynamical networks. Nonlinear Dyn. 77 (2014), 481-489.   DOI:10.1007/s11071-014-1311-7
  23. Y. Z. Sun, W. Li and J. Ruan: Generalized outer synchronization between complex dynamic networks with time delay and noise perturbation. Commun. Nonliear Sci. Numer. Simul. 18 (2013), 989-998.   DOI:10.1016/j.cnsns.2012.08.040
  24. F. Sun, H. Peng, Q. Luo, L. Li and Y. Yang: Parameter identification and projective synchronization between different chaotic systems. Chaos 19 (2009), 023109.   DOI:10.1063/1.3127599
  25. Y. Z. Sun and J. Ruan: Synchronization in coupled time-delayed systems with parameter mismath and noise perturbation. Chaos 19 (2009), 043113.   DOI:10.1063/1.3262488
  26. Y. Z. Sun, H. J. Shi, E. A. Bakare and Q. X. Meng: Noise-induced outer synchronization between two different complex dynamical networks. Nonlinear Dyn. 76 (2014), 519-528.   DOI:10.1007/s11071-013-1145-8
  27. H. W. Tang, L. Chen, J. A. Lu and C. K. Tse: Adaptive synchronization between two nonidentical topological structures. Physica A 387 (2008), 5623-5630.   DOI:10.1016/j.physa.2008.05.047
  28. G. J. Wang, J. D. Cao and J. Q. Lu: Outer synchronization between two nonidentical networks with circumstance noise. Physica A 389 (2010), 1480-1488.   DOI:10.1016/j.physa.2009.12.014
  29. X. F. Wang and G. R. Chen: Synchronization in scal-free dynamical networks: robustness and fragility. IEEE Trans. Circuits Syst. I 49 (2002), 54-62.   DOI:10.1109/81.974874
  30. H. Wang, Z. Z. Han, Q. Y. Xie and W. Zhang: Finite-time synchronization of uncertain unified chaotic systems based on CLF. Nonlinear Anal.: Real World Appl. 10 (2009), 2842-2849.   DOI:10.1016/j.nonrwa.2008.08.010
  31. H. Wang, Z. Z. Han, Q. Y. Xie and W. Zhang: Finite-time chaos control via nonsingular terminal sliding model control. Commun. Nonlinear Sci. Numer. Simulat. 14 (2012), 2728-2733.   DOI:10.1016/j.cnsns.2008.08.013
  32. W. Wang, L. Li, H. Peng, J. Xiao and Y. Yang: Synchronization control of memristor-based recurrent neural networks with perturbations. Neural Networks. 53 (2014), 8-14.   DOI:10.1016/j.neunet.2014.01.010
  33. W. P. Wang, H. P. Peng, L. X. Li, J. H. Xiao and Y. X. Yang: Finite-time function projective synchronization in complex multi-links networks with time-varying delay. Neural Process. Lett. 41 (2015), 71-88.   DOI:10.1007/s11063-013-9335-4
  34. D. J. Watts and S. H. Strogatz: Collective dynamics of small-world networks. Nature 393 (1998), 440-442.   DOI:10.1038/30918
  35. X. S. Yang and J. D. Cao: Finite-time stochastic synchronization of complex networks. App. Math. Modeling. 34 (2010), 3631-3641.   DOI:10.1016/j.apm.2010.03.012
  36. W. W. Yu, G. R. Chen and J. H. Lü: On pinning synchronization of complex dynamical networks.    CrossRef
  37. X. B. Zhou, M. R. Jiang and Y. Q. Huang: Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification. Kybernetika 50 (2014), 632-642.   DOI:10.14736/kyb-2014-4-0632
  38. C. S. Zhou, A. E. Motter and J. Kurths: Universality in the synchronization of weighted random networks. Phys. Rev. Lett. 96 (2006), 034101.   DOI:10.1103/physrevlett.96.034101