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FINITE-TIME OUTER SYNCHRONIZATION
BETWEEN TWO COMPLEX DYNAMICAL NETWORKS
WITH TIME DELAY AND NOISE PERTURBATION

Zhi-cai Ma, Yong-zheng Sun, Hong-jun Shi

In this paper, the finite-time stochastic outer synchronization and generalized outer synchro-
nization between two complex dynamic networks with time delay and noise perturbation are
studied. Based on the finite-time stability theory, sufficient conditions for the finite-time outer
synchronization are obtained. Numerical examples are examined to illustrate the effectiveness
of the analytical results. The effect of time delay and noise perturbation on the convergence
time are also numerically demonstrated.
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1. INTRODUCTION

Complex networks widely exist in our life, from the internet to the world wide web, from
communication networks to social organizations, from food webs to ecological commu-
nities and so forth [3, 4, 34]. The structure of many real systems in nature can be
described by complex networks. Therefore, exploring the network topology and dynam-
ical activities of complex networks is of fundamental importance to understanding the
functions of real-world systems. In recent years, the dynamics of complex networks have
been extensively investigated. As a typical kind of dynamics, synchronization of com-
plex networks has attracted more and more attention. This is partly due to its broad
applications in secure communication, neural networks, biological systems, information
science, etc [1].

Synchronization is one of the basic motions in nature where many connected system
evolving in synchrony. Therefore, as a typical kind of dynamics on complex network,
synchronization is an important research topic [6, 11, 14, 17, 21, 24, 29, 36, 37, 38]. In
the past decades, most of the works in network synchronization has paid attention to
the inner synchronization, which is concerned with the synchronization among the nodes
within a network. On the hand, there exists another type of network synchronization,
i. e.. “outer synchronization” between two or more complex networks. Recently, there
are some researches who have studied the outer synchronization between two complex
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networks [2, 18, 22, 23, 27, 28]. In Ref. [28], the stochastic LaSalle invariance princi-
ple is employed to theoretically prove the outer synchronization between two complex
networks with noise perturbation. In Ref. [23], the problem of generalized outer synchro-
nization between two completely different complex dynamical networks is investigated.
With a nonlinear control scheme, a sufficient criterion for this generalized outer synchro-
nization and two corollaries are derived based on Barbalat’s lemma. Generalized outer
synchronization between two uncertain dynamical networks with a novel feature that
the couplings of each network are unknown functions was investigated in Ref. [22]. The
mixed outer synchronization of coupled complex networks with time-varying coupling
delay was investigated in Ref. [2]. Most of above works primarily focus on the asymp-
totical or exponential synchronization of networks. However, in reality, the networks
might always be expected to achieve synchronization as quickly as possible. An effective
method to achieve faster convergence rate in complex networks is finite-time synchro-
nization control techniques. In Ref. [35], Yang and Cao investigated the finite-time
stochastic synchronization of complex networks by using finite-time stability theorem,
inequality techniques. In Ref. [10], Huang et al. investigated the global finite-time
stabilization of a class of uncertain nonlinear systems. In Ref. [31], Wang and Han et
al. investigated the problem of finite-time chaos control via nonsingular terminal sliding
model control. Moreover, the finite-time control techniques have demonstrated better
disturbance rejection and robustness against uncertainties [5].

Between the nodes of complex network, the transmission of information is always ex-
ist, and a lot of information is private, so secure communication is very important. The
principle of signal transmission is select one network as the launch system, sent the use-
ful signal and the output signal out at the same time, select another network as receive
system, by using the chaos synchronization of networks, one can recovery the useful in-
formation in the receiver channel in finite time. However, in many large scale networks,
time delays are unavoidable, due to the finite information transmission and processing
speeds among the network nodes. Time delay coupling extensively exists in many bio-
logical and physical systems such as gene regulatory networks, communication networks,
neural networks and electrical power grids, etc. It has also been discovered that time de-
lays frequently have great influence on the behavior of dynamical systems [9, 15, 19, 33].
In addition, noise is ubiquitous in the real systems, the synchronization of coupled sys-
tems or networks is unavoidably affected by different kinds of noise. Therefore, the effect
of noise on synchronization has been well studied [8, 13, 16, 20, 25, 26, 32]. Noise is
commonly regarded as a persistent disturbance which usually inhibits synchronization.
However, recent researchers have reported that noise could also play a constructive role
in nonlinear systems [16, 20, 26, 32]. However, to the best of our knowledge, there
have not been any general results for the finite-time outer synchronization of complex
dynamic networks with time delay and noise perturbation.

Inspired by the above analysis, the question which we address in our present study
is: Can finite-time generalized synchronization between two different chaotic systems
be achieved with the perturbation of noise? Besides the numerical evidences, are there
any analytical arguments illustrating this phenomenon? Utilizing the finite-time sta-
bility theory of stochastic differential equations, we analytically show that two systems
can realize finite-time generalized synchronization if two chaotic systems have different
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dynamical behaviors. Finally, some numerical examples are examined to illustrate the
effectiveness of the analytical results.

The rest of this paper is organized as follows. In Section 2, we introduce two net-
works with time-delay and noise perturbation. Sufficient conditions for the finite-time
stochastic outer synchronization and finite-time outer synchronization are respectively
derived in Section 3 and Section 4. Numerical examples are shown in Section 5. Finally,
some conclusions are drawn in Section 6.

Notations: Throughout this paper unless specified we let In be an n × n identity
matrix. E[·] denotes the expected value of a stochastic process. If A is a vector or matrix,
its transpose is denoted by AT . ‖ · ‖ be Euclidean norm, for vector x ∈ Rn, ‖x‖ = xTx,
for matrix A ∈ Rnn, ‖A‖ =

√
λmax(ATA), where λmax(·) means the largest eigenvalue

of the matrix.

2. PROBLEM STATEMENT AND PRELIMINARIES

In this paper, we consider the dynamical networks described by:

ẋi(t) = f(xi(t)) +
N∑
j=1

cijPxj(t− τ), i = 1, 2, . . . , N, (1)

where xi(t) = (xi1, xi2, . . . , xin)T ∈ Rn is state vector of the ith node, f : Rn → Rn

is continuously differentiable nonlinear vector function, τ is the time delay, P is the
inner connection matrix between two connected nodes and C = (cij)N×N represents the
coupling configurations of the network, whose entries cij are defined as follow: if there
is a link from node j to node i(i 6= j) then set cij > 0, otherwise cij = 0(i 6= j). The
diagonal elements of matrix C are defined as

cii = −
N∑

j=1,j 6=i

cij , i = 1, 2, . . . , N.

In order to achieve the finite-time outer synchronization between two complex net-
works, we refer to network (1) as the drive network, and the response network is given
by the following equations:

ẏi(t) = f(yi(t))+
N∑
j=1

dijQyj(t−τ)+ui(t)+σi(ei(t), ei(t−τ), t)Ẇ , i = 1, 2, . . . , N, (2)

where yi(t) = (yi1, yi2, . . . , yin)T ∈ Rn is the state vector of node i; f has the same
meaning of network (1), Q is the inner connection matrix between two connected nodes.
D = (dij)N×N has the seem meaning as C in network (1), ei(t) = yi(t) − xi(t)(i =
1, 2, . . . , N) are the synchronization errors between the drive system (1) and the respond
network (2), ui(t)(i = 1, 2 . . . , N) are the controllers will be designed. The noise term in
system (2) is mostly utilized to describe the coupling process influenced by environmental
fluctuation, inaccurate design of coupling strength, etc. where σi : Rn → Rn×m is
called the noisy intensity matrix, W = (w1, w2, . . . , wm)T is an m-dimensional Brownian
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motion defined on a complete probability space (Ω,F , P ). Accordingly, Ẇ is an m-
dimensional white noise.

To realized the outer synchronization in a finite-time, we designed the feedback con-
trollers as follow:

ui(t) = −kei(t)− λsign(ei(t))|ei(t)|θ +
N∑
j=1

(cijP − dijQ)xj(t− τ)

−λ
(∫ t

t−τ
peTi (s)ei(s) ds

) 1+θ
2
(

ei(t)
‖ei(t)‖2

)
, (3)

where |ei(t)|θ = (|ei1(t)|θ, . . . , |ein(t)|θ)T , sign(ei(t)) = diag(sign(e1(t)), . . . , sign(en(t))),
the parameter θ is a constant been in interval (0, 1), k and λ are positive constants to
be determined.

Remark 2.1. In this paper, the configuration matrices C and D of network (1) and (2)
are not assumed to be symmetric or irreducible, which means that network (1) and (2)
can be undirected or directed networks, and they may also contain nodes and cluster.

Throughout this paper, we make the following assumptions:

Assumption 2.2. For function f(x) there exists a positive constant l such that

[x(t)− y(t)]T [f(x(t))− f(y(t))] ≤ [x(t)− y(t)]T l[x(t)− y(t)], ∀t ≥ 0,∀x, y ∈ Rn. (4)

Assumption 2.3. The noise intensity function σi(ei(t), ei(t−τ)) satisfies the Lipschitz
condition and there exists two positive constants ξ and η such that

trace(σi(ei(t))σi(ei(t− τ))) ≤ ξeTi (t)ei(t) + ηeTi (t− τ)ei(t− τ), i = 1, 2, . . . , N. (5)

Moreover, σ(0) ≡ 0.

Definition 2.4. Systems (1) and (2) are said to achieve finite-time stochastic complete
synchronization, if for any initial states xi(0), yi(0), there exists a finite time function
T0 such that

E‖yi(t, yi(0))− xi(t, xi(0))‖ = 0,

for all t ≥ T0, where T0 = inf{T : x(t) = y(t),∀t ≥ T} is called the settling time.

Remark 2.5. The stochastic settling time function T0 is not only a function of xi(0), yi(0),
but a stochastic variable for fixed xi(0) and yi(0). Hence, the finite-time property of T0

is evaluated by 0 < E(T0) < +∞.

Consider the following n-dimensional stochastic differential delay equation:

dz(t) = ϕ(t, z(t), z(t− τ))dt+ ψ(t, z(t), z(t− τ))dW, (6)

on t ≥ 0 with initial data ζ ∈ CµF0
([−τ, 0], Rn). Here, ζ ∈ CµF0

([−τ, 0], Rn) repre-
sents the family of all F0-measurable bounded CµF0

([−τ, 0], Rn)-valued random variables.
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ϕ,ψ : [0,+∞]×Rn×Rn → Rn are locally Lipschitz continuous and satisfy linear growth
condition. For each V ∈ C2,1(Rn × R+, R+), the operator LV associated to Eq. (6) is
defined by

LV =
∂V

∂t
+
∂V

∂z
· ϕ+

1
2

trace
[
ψT · ∂

2V

∂2z
· ψ
]
, (7)

where ∂V/∂z = (∂V/∂z1, ∂V/∂z2, . . . , ∂V/∂zn), ∂2V/∂2z = (∂2V/∂zi∂zj)n×n.

Lemma 2.6. (Wang et al. [30]) Assume that a continuous, positive-definite function
V (t) satisfies the following differential inequality:

V̇ (t) ≤ −κV ρ(t),

where κ, ρ are two constants. Then, for any given t0, V (t) satisfies the following inequal-
ity:

V 1−ρ(t) ≤ V 1−ρ(t0)− κ(1− ρ)(t− t0), t0 ≤ t ≤ t1,

and

V (t) ≡ 0, t ≥ t1,

with t1 is given by

t1 = t0 +
(V (t0))1−ρ

κ(1− ρ)
.

Lemma 2.7. (Jensen inequality, Hardy et al. [7]) Let a1, a2, . . . , an > 0 and 0 < r < p.
Then (

n∑
i=1

api

) 1
p

≤

(
n∑
i=1

ari

) 1
r

.

Lemma 2.8. (Itô formula) Assume that V (t, x) ∈ C1,2(R+ ×Rd),

x(t) = x(t0) +
∫ t

t0

f(s)ds+
∫ t

t0

g(s) dw(s), t ∈ J,

where J = [t0, T ] ∈ R+ is the fixed interval, f ∈ L1(J,Rd), g ∈ L2(J,Rd×m), then
V (t, x(t)) is a Itô process, and

dV (t, x(t)) = LV (t, x(t))dt+ Vx(t, x(t))g(t, x(t))dw(t),

where

LV (t, x(t)) = Vt(t, x(t)) + Vx(t, x(t))f(t) + (1/2)trace[gT (t)Vxx(t, x(t))g(t)].
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3. SUFFICIENT CONDITIONS FOR FINITE-TIME STOCHASTIC
SYNCHRONIZATION

In this section, we investigate the finite-time stochastic outer synchronization with time
delay and noise perturbation between networks (1) and (2), and the main results are
drawn in the following theorem and corollaries.

Theorem 3.1. Suppose that Assumption 2.2 and 2.3 hold and there exist positive con-
stants k, p and ξ, η such that{

2l − 2k + p+ ξ + λmax(Qs) ≤ 0,
η − p+ 1 ≤ 0,

where Q = D ⊗ Q, Qs = QQT . Then, under the controller (3), networks (1) and (2)
can achieve finite-time stochastic outer synchronization.

P r o o f . From the networks (1) and (2), we can get the following error system:

ėi(t) = f(yi(t))− f(xi(t)) +
N∑
j=1

dijQej(t− τ) + σi(ei(t), ei(t− τ))Ẇ

−kei(t)− λsign(ei(t))|ei(t)|θ − λ
(∫ t

t−τ
peTi (s)ei(s) ds

) 1+θ
2
(

ei(t)
‖ei(t)‖2

)
.(8)

Consider the following Lyapunov function:

V (t) =
N∑
i=1

eTi (t)ei(t) +
N∑
i=1

∫ t

t−τ
peTi (s)ei(s) ds. (9)

Thus, the diffusion operator L fined in Eq. (7) onto the function V along the trajectory
of system (8) is calculated and estimated as follows:

LV (t) = 2
N∑
i=1

eTi (t)[f(yi(t))− f(xi(t)) +
N∑
j=1

dijQej(t− τ)− kei(t)

−λ
(∫ t

t−τ
peTi (s)ei(s) ds

) 1+θ
2
(

ei(t)
‖ei(t)‖2

)
] +

N∑
i=1

trace(σi(ei(t)σi(ei(t− τ))

−λsign(ei(t))|ei(t)|θ + p

N∑
i=1

[eTi (t)ei(t)− eTi (t− τ)ei(t− τ)]. (10)
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From Assumptions 2.2 and 2.3, we can get

LV (t) ≤ 2l
N∑
i=1

eTi (t)ei(t) + 2
N∑
i=1

eTi (t)
N∑
j=1

dijQej(t− τ)− 2k
N∑
i=1

eTi (t)ei(t)

−2λ
N∑
i=1

eTi (t)sign(ei(t))|ei(t)|θ

−2λ
N∑
i=1

eTi (t)
(∫ t

t−τ
peTi (s)ei(s) ds

) 1+θ
2
(

ei(t)
‖ei(t)‖2

)

+
N∑
i=1

[ξeTi (t)ei(t) + ηeTi (t− τ)ei(t− τ)]

+p
N∑
i=1

[eTi (t)ei(t)− eTi (t− τ)ei(t− τ)]. (11)

Simplifying the formula (11), we obtain

LV (t) ≤ (2l − 2k + p+ ξ)
N∑
i=1

eTi (t)ei(t) + (η − p)
N∑
i=1

eTi (t− τ)ei(t− τ)

+2
N∑
i=1

eTi (t)
N∑
j=1

dijQej(t− τ)− 2λ
N∑
i=1

eTi (t)sign(ei(t))|ei(t)|θ

−2λ
N∑
i=1

eTi (t)
(∫ t

t−τ
peTi (s)ei(s) ds

) 1+θ
2
(

ei(t)
‖ei(t)‖2

)
. (12)

Note that

N∑
i=1

eTi (t)sign(ei(t))|ei(t)|θ =
N∑
i=1

(|ei(t)|θ)T sign(ei(t))ei(t)

=
N∑
i=1

(|ei(t)|θ)T |ei(t)|

=
N∑
i=1

N∑
j=1

|eij |θ+1.

From Lemma 2.7, we have

 N∑
i=1

N∑
j=1

|eij |θ+1

 1
θ+1

≥

 N∑
i=1

N∑
j=1

|eij |2
 1

2

.
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Hence, we can get

N∑
i=1

N∑
j=1

|eij |θ+1 ≥

 N∑
i=1

N∑
j=1

|eij |2


θ+1
2

=

(
N∑
i=1

eTi (t)ei(t)

) θ+1
2

. (13)

Moreover

N∑
i=1

eTi (t)
N∑
j=1

dijQej(t− τ) = eT (t)D ⊗Qe(t− τ). (14)

From the elementary inequality that

2eT (t)D ⊗Qe(t− τ) ≤ eT (t)QQT e(t) + eT (t− τ)e(t− τ).

Thus, we can obtain the following inequality

LV (t) ≤ (2l − 2k + p+ ξ + λmax(Qs))
N∑
i=1

eTi (t)ei(t)

+(η − p+ 1)
N∑
i=1

eTi (t− τ)ei(t− τ)

−2λ

( N∑
i=1

∫ t

t−τ
peTi (s)ei(s) ds

) 1+θ
2

+

(
N∑
i=1

eTi (t)ei(t)

) 1+θ
2
 . (15)

If {
2l − 2k + p+ ξ + λmax(Qs) ≤ 0,
η − p+ 1 ≤ 0, (16)

then we can get

LV (t) ≤ −2λ

[
N∑
i=1

∫ t

t−τ
peTi (s)ei(s) ds+

N∑
i=1

eTi (t)ei(t)

] 1+θ
2

.

Thus

LV (t) ≤ −2λ(V (t))
1+θ
2 . (17)

According to the Lemma 2.8, we have

dV (t) = LV (t)dt+ 2
N∑
i=1

eTi (t)σi(ei, ei(t− τ))dW (t). (18)

Taking the expectations on both sides of (18), we obtain from (17) that

E[V̇ (t)] ≤ −2λ(E[V (t)])
1+θ
2 . (19)
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By Lemma 2.6, E[V (t)] converges to zero in a finite time, and the finite time is estimated
by

t1 =
(2V (0))

1+θ
2

λ(1− θ)
, (20)

where t0 = 0,V (0) =
N∑
i=1

eTi (0)ei(0) +
N∑
i=1

∫ 0

−τ pe
T
i (s)ei(s) ds. This means that complete

outer synchronization between systems (1) and (2) could be achieved in a finite time for
almost every initial data. The proof is completed. �

Remark 3.2. We can see that, for any high level noise, there exits sufficiently large
positive constant k such that the finite-time stochastic outer synchronization is realized
in probability. Hence the synchronization is robust to the noise perturbation.

Remark 3.3. The convergence time of the proposed algorithm is closely related to the
protocol parameters λ, θ and τ . From (20), one can see that for fixed parameter θ and
V (0), the synchronization time decreases as λ increases. In addition, by some straight-
forward arguments, it can be shown that smaller θ can lead to a shorter convergence
time when initial states of two networks differ a little from each other.

Based on Theorem 3.1, we can easily derive the following corollary:

Corollary 3.4. Let Assumptions 2.2 and 2.3 hold. If networks (1) and (2) have the
same topological structures and uniform inner-coupling matrices, i. e.., C = D, P = Q,
and {

2l − 2k + p+ ξ ≤ 0,
η − p ≤ 0.

Then networks (1) and (2) can achieve finite-time stochastic outer synchronization under
the following control schemes:

ui(t) = −kei(t)− λsign(ei(t))|ei(t)|θ − λ
(∫ t

t−τ
peTi (s)ei(s) ds

) 1+θ
2
(

ei(t)
‖ei(t)‖2

)
,

i = 1, 2, . . . , N.

Corollary 3.5. Let Assumption 2.2 holds. If σi(ei(t), ei(t−τ), t) ≡ 0 in system (2) and

2l − 2k + p+ λmax(Qs) ≤ 0.

Then networks (1) and (2) can achieve finite-time stochastic outer synchronization under
the controllers (3).

4. SUFFICIENT CONDITIONS FOR THE FINITE-TIME GENERALIZED OUTER
SYNCHRONIZATION

In this section, we investigate the finite-time generalized outer synchronization between
two complex dynamic networks with time delay and noise perturbation. To realize the
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generalized outer synchronization, we refer to system (1) as the drive network, and the
response network is given by following equations:

ẏi(t) = g(yi(t)) +
N∑
j=1

dijQyj(t− τ) + ui(t) + σi(ei(t), ei(t− τ), t)Ẇ , i = 1, 2, . . . , N, (21)

where g : Rn → Rn is a continuously differentiable functions which determine the
dynamical behavior of the nodes in the network (21). The coupling configuration matrix
D and inner connection matrix Q have same meaning as those in Sec. 3.

Definition 4.1. Let φi : Rn → Rn(i = 1, 2, . . . , N) be continuously differentiable func-
tion. Network (21) is said to achieve finite-time generalized outer synchronization with
network (1), if for any initial states xi(0), yi(0), there exists a finite time function T ∗0
such that

E‖yi(t, yi(0))− φ(xi(t, xi(0)))‖ = 0,

for all t ≥ T ∗0 , where T ∗0 = inf{T ∗ : x(t) = y(t),∀t ≥ T ∗} is called the settling time.

Applying the above approach, we can obtain the following results for the finite-
time generalized outer synchronization between networks (1) and (21). To realized the
synchronization in a finite-time, we designed the feedback controllers as follow:

ui(t) = Dφi(xi)ẋi − g(φi(xi))− kei(t)− λsign(ei(t))|ei(t)|θ

−
N∑
j=1

dijQφjxj(t− τ)− λ
(∫ t

t−τ
peTi (s)ei(s) ds

) 1+θ
2
(

ei(t)
‖ei(t)‖2

)
. (22)

Theorem 4.2. Suppose that there exists a constant l∗ such that

[x(t)− y(t)]T [g(x(t))− g(y(t))] ≤ [x(t)− y(t)]T l∗[x(t)− y(t)], ∀t ≥ 0,∀x, y ∈ Rn, (23)

and Assumption 2.3 hold, if the following condition is satisfied:{
2l∗ − 2l + p+ ξ + λmax(Qs) ≤ 0,
η − p+ 1 ≤ 0,

where Q and Qs have the seem meaning as those in Theorem 3.1. Then, under the
controllers (22), networks (1) and (21) can achieve finite-time stochastically generalized
outer synchronization.

P r o o f . Letting ei(t) = yi(t)− φi(xi(t)), one has the following error system:

ėi(t) = g(yi(t))− g(φi(xi(t)))− kei(t)− λsign(ei(t))|ei(t)|θ −
N∑
j=1

dijQej(t− τ)

−λ
(∫ t

t−τ
peTi (s)ei(s) ds

) 1+θ
2
(

ei(t)
‖ei(t)‖2

)
. (24)
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Construct the following Lyapunov function

V (t) =
N∑
i=1

eTi (t)ei(t) +
N∑
i=1

∫ t

t−τ
peTi (s)ei(s) ds

the diffusion operator L fined in Eq. (7) onto the function V along the trajectory of
system (24) is calculated and estimated as follows:

LV (t) = 2
N∑
i=1

eTi (t)[g(yi(t))− g(φi(xi(t))) +
N∑
j=1

dijQej(t− τ)− kei(t)

−λsign(ei(t))|ei(t)|θ − λ
(∫ t

t−τ
peTi (s)ei(s) ds

) 1+θ
2
(

ei(t)
‖ei(t)‖2

)
]

+
N∑
i=1

trace(σi(ei(t)σi(ei(t− τ))

+p
N∑
i=1

[eTi (t)ei(t)− eTi (t− τ)ei(t− τ)]. (25)

From (23) and Assumption 2.3 we get

LV (t) ≤ 2l∗
N∑
i=1

eTi (t)ei(t) + 2
N∑
i=1

eTi (t)
N∑
j=1

dijQej(t− τ)− 2k
N∑
i=1

eTi (t)ei(t)

−2λ
N∑
i=1

eTi (t)sign(ei(t))|ei(t)|θ

−2λ
N∑
i=1

eTi (t)
(∫ t

t−τ
eTi (s)ei(s) ds

) 1+θ
2
(

ei(t)
‖ei(t)‖2

)

+
N∑
i=1

[ξeTi (t)ei(t) + ηeTi (t− τ)ei(t− τ)]

+p
N∑
i=1

[eTi (t)ei(t)− eTi (t− τ)ei(t− τ)]. (26)

The last proof is omitted as it is similar to that of Theorem 3.1. �

Corollary 4.3. Let (23) hold. If σi(ei(t), ei(t− τ), t) ≡ 0 in system (21) and{
2l∗ − 2k + p+ λmax(Qs) ≤ 0,
1− p ≤ 0.

Then networks (1) and (21) can achieve finite-time generalized outer synchronization
under the controllers (3).
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5. SIMULATION RESULTS

In this section, we take two examples to illustrate the feasibility and effectiveness
of the theoretical results obtained in previous sections. In the numerical simulations,
we use the Euler-Maruyama numerical scheme [12] to solve all the stochastic differential
equations, and all the differential equations are solved with step-size 0.001.

Example 1. In this example, we take the Rössler like system as the node dynamics
of networks (1) and (2), the system can be described as: ẋ1 = −α(ϑx1 + βx2 + εx3)

ẋ2 = αx1 + αγx2

ẋ3 = −αµx3 + αµψ(x1)
(27)

where x = (x1, x2, x3)T ∈ R3 is the state vector,

ψ(s) =
{

0, s < 2.56;
ρ(s− 2.56), s ≥ 2.56.

As show in Figure 1, the Rössler-like system has a chaotic attractor when α = 0.03,
β = 1.5, γ = 0.2, µ = 1.5, ε = 0.75, ρ = 21.43 and ϑ = 0.075. And it is easy to compute
that the λmax(A+AT ) = 0.0208 and

(x− y)T (f(x)− f(y)) = αµ(x3 − y3)(ψ(x1)− ψ(y1))

≤ αµρ

2
(x− y)T (x− y).

Therefore, the Assumption 2.2 is satisfied with l = 0.4822.
Take σi(ei, ei(t− τ)) = σ0diag(ei1(t)− ei1(t− τ), ei2(t)− ei2(t− τ)), ei3(t)− ei3(t−

τ)), i = 1, 2, . . . , N . Meanwhile, assume that W (t) = [w1(t), w2(t), w3(t)] is a three-
dimensional Brownian motion. Then, σi(ei, ei(t − τ), t) satisfies the locally Lipschitz
condition and the linear growth condition, i. e..,

trace(σTi σi) 6 2σ2
0e
T
i (t)ei(t) + 2σ2

0e
T
i (t− τ)ei(t− τ).

The initial state of the ith node of drive network ζi = [1 + exp(−i), 1 − 0.1 ∗ i, 2 +
cos i](−τ ≤ t ≤ 0), while the initial state of the ith node of the respond network is
ζj = [1 + cos i, 1− sin i, 2 + exp(−i)](−τ ≤ t ≤ 0).

In the numerical simulation, for brevity, we always set P = Q = I3.
The configuration matrix is given as follows:

C = D =



−3 0 1 0 0 1 0 0 0 1
1 −2 0 1 0 0 0 0 0 0
1 0 −4 0 0 1 0 1 0 1
0 0 1 −2 0 1 0 0 0 0
0 0 1 1 −2 0 0 0 0 0
0 0 1 0 1 −3 0 0 0 1
0 0 1 0 1 1 −4 0 1 0
0 0 0 1 0 0 1 −2 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 1 0 1 0 0 0 −2
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Fig. 1. Chaotic attractor generated by the system (27) when

α = 0.03, β = 1.5, γ = 0.2, µ = 1.5, ε = 0.75, ρ = 21.43 and δ = 0.075.
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Fig. 2. Trajectories of synchronization error (a) and the total

synchronization error (b) between network (1) and (2) with k = 3,

λ = 1.5, θ = 0.6, σ0 = 1, τ = 0.3.



620 Z.C. MA, Y. Z. SUN AND H. J. SHI

It is easy to compute that λmax(Qs) = 0.503. Take k = 6, λ = 1.5, θ = 0.6, τ = 0.3,
σ0 = 1.5, we simulate the evolution of the networks according to the controllers defined
in Eq. (3). According to the Theorem 3.1, we take the constants p = 3, ξ = 1, η = 2,
networks (1) and (2) can reach outer synchronization in a finite time. By computing
we get T1 = 0.8907. Figures 2(a) and 2(b) show the trajectories of synchronization
errors eij(t)(i = 1, 2, . . . , 10; j = 1, 2, 3) and the total synchronization error δ(t), where
δ(t) = ‖e(t)‖. From Figure 2, we can find that the outer synchronization is realized after
t ≥ 0.45, and the simulations match the theoretical results perfectly.

To study the effect of the control parameters τ and σ0 on the settling time, we
simulate the evolution of two networks with the controllers defined in Eq. (3) through
taking different values of τ and σ0. Figure 3 gives the evolutions of the total error values
of τ and shows that networks with small time delay converge faster than those with
large time delay. Figure 4 gives the evolutions of the total error values of σ0 and shows
that the synchronization time decreases when parameter σ0 increases.
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Fig. 3. (a) Time evolution of total synchronization error E(t) with

time delay τ = 1, 2, 4, 8 and σ = 0.3; (b) The corresponding

logarithmic plot.
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Example 2. In this example, we take the Rössler like system as the node dynamics of
drive networks (1) and Lorenz system as the node dynamics of response networks (21).
The Lorenz system is described by: ẋ1 = −a(x1 − x2)

ẋ2 = cx1 − x2 − x1x3

ẋ3 = −bx3 + x1x2

(28)

which has a chaotic attractor when a = 10, b = 8/3, c = 28. We can easy see that

(x− y)T (f(x)− f(y)) = (x− y)A(x− y)T + αµ(x3 − y3)(ψ(x1)− ψ(y1))

≤
[
λmax(

A+AT

2
) +

αµρ

2

]
(x− y)T (x− y).

Therefore, the Assumption 2.2 is satisfied.
The map φi is defined as

φi(xi) =
(
xi1 − xi2, x2

i2 + 1,
1
2
x2
i3 − xi1

)T
, i = 1, 2, . . . , N.

Then

Dφi(xi) =

 1 −1 0
0 2xi2 0
−1 0 xi3

 .

In this numerical simulations, for brevity, we set P = Q = I3. The configuration
matrix for the drive network is given as follows:

C =



−1 0 0 0 0 0 0 0 0 1
0 −3 0 1 0 1 0 0 1 0
1 0 −3 0 0 1 0 1 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 1 0
1 0 0 0 1 −3 0 1 0 0
0 1 0 1 0 0 −3 0 0 1
0 0 1 0 1 0 0 −2 0 0
1 0 0 1 0 0 0 1 −3 0
1 0 0 0 0 1 0 0 0 −2


The configuration matrix for the response network is given as follows:

D =



−3 0 1 0 0 1 0 0 0 1
0 −1 0 0 0 1 0 0 0 0
0 0 −2 0 0 1 0 0 0 1
0 0 1 −2 0 1 0 0 0 0
0 0 1 0 −1 0 0 0 0 0
0 0 0 0 1 −2 0 0 0 1
1 0 0 0 1 1 −3 0 0 0
0 0 0 0 0 1 1 −2 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 1 0 0 0 0 0 −1
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Fig. 5. Trajectories of synchronization error (a) and the total

synchronization error (b) between networks (1) and (21) with k = 32,

λ = 3, θ = 0.6, σ0 = 0.02, τ = 0.5.

It is easy to compute that λmax(Q) = 29.4769. Take k = 32, λ = 3, θ = 0.6, τ = 0.5,
we simulate the evolution of the networks according to the controllers defined in (22)
with σ0 = 0.02. According to Theorem 4.2, we take p = 3, ξ = 1, η = 2, network (1) and
network (21) can achieve generalized outer synchronization in a finite time. By comput-
ing we get T1 = 1.8576. Figures 5(a) and 5(b) show the trajectories of synchronization
errors eij(t)(i = 1, 2, . . . , 10; j = 1, 2, 3) and the total synchronization error δ(t), where
δ(t) = ‖e(t)‖. From Figure 5, one can find that the generalized outer synchronization
is realized after t ≥ 2.95, and the simulations match the theoretical results perfectly.
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Fig. 6. The trajectory of first node x1j(j = 1, 2, 3) of Rössler-like

system and the first node y1j(j = 1, 2, 3) of Lorenz system.

Figure 6 shows the trajectory of first node x1(j = 1, 2, 3) of Rössler-like system and the
first node y1(j = 1, 2, 3) of Lorenz system.

Example 3. Some real networks often have complex topology, and the network topol-
ogy may play a vital role in outer synchronization. In order to demonstrate the effective-
ness of the theoretical results on small-world networks, we assume that networks (1) and
(2) are small-world networks. The algorithm starts from a regular lattice with N nodes,
and then each link is rewired to another node randomly chosen from all possible nodes
with a certain probability p (we should avoid self-loops and link duplications). First, we
generate a small-world network with N = 200, p = 0.5 and the average degree 〈d〉 = 10.
Take σ0 = 1.5, we simulate the evolution of the networks according to the protocol
defined in Eq. (3). The results are exhibited in Figures 7(a) and 7(b). From Figure 7
one can see that the small-world can also realize outer synchronization. To illustrate
the effect of the small-word network parameters p on the speed of synchronization, we
simulate the evolution of two networks with different values of p in Figure 8.
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Fig. 7. Trajectories of synchronization error (a) and the total

synchronization error (b) between networks (1) and (2) with

σ0 = 1.5, τ = 1, p = 0.5..
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Fig. 8. Trajectories of total synchronization error between

small-world networks (1) and (2) with p = 0.2, 0.5, 0.8..

6. CONCLUSIONS

In this paper, we have investigated the finite time outer synchronization between two
complex networks with time delay and noise perturbation. First, we considered the
stochastic synchronization between two complex networks, sufficient conditions for stochas-
tic synchronization are obtained based on the finite time stability theory of stochastic
differential equations. The generalized outer synchronization between two different com-
plex networks is also investigated based on a continuously differentiable function φ. The
theoretical results show that two networks can achieve outer synchronization even if the
coupling configuration matrix is not symmetric or irreducible. Numerical simulations
fully verify our main results. The effect of time delay τ and the strength of noise θ on the
synchronization speed are also numerically demonstrated. From the simulation results
we can see that small time delay τ converge faster than those with large time delay
and the synchronization time decreases when parameter σ increases. The controllers
designed in this paper are very extensive, they also can be used to solve the stabiliza-
tion of neural network and the projective synchronization of complex networks. In this
paper, we considered the complex networks are continuously. If the networks are not
continuously, how to design the controller to achieve synchronization is an interesting
problem. Therefore, studying the finite time synchronization of two complex networks
with discontinuous coupling is important. This problem is our future research direction.
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[36] W. W. Yu, G. R. Chen, and J. H. Lü: On pinning synchronization of complex dynamical
networks. Automatica 45 (2009), 429–435. DOI:10.1016/j.automatica.2008.07.016

[37] X. B. Zhou, M. R. Jiang, and Y. Q. Huang: Switched modified function projective synchro-
nization between two complex nonlinear hyperchaotic systems based on adaptive control
and parameter identification. Kybernetika 50 (2014), 632–642. DOI:10.14736/kyb-2014-
4-0632

[38] C. S. Zhou, A. E. Motter, and J. Kurths: Universality in the synchronization of weighted
random networks. Phys. Rev. Lett. 96 (2006), 034101. DOI:10.1103/physrevlett.96.034101

Zhi-cai Ma, School of Sciences, China University of Mining and Technology, Xuzhou,
Jiangsu, 221008 and Department of Mathematics, Longqiao College of Lanzhou Uni-
versity of Finance and Economics, Lanzhou, Gansu, 730101. P.R. China.

e-mail: zhicai ma@hotmail.com

Yong-zheng Sun, Corresponding author. School of Sciences, China University of Mining
and Technology, Xuzhou, Jiangsu, 221008. P.R. China.

e-mail: yzsung@gmail.com

Hong-jun Shi, School of Sciences, China University of Mining and Technology, Xuzhou,
Jiangsu, 221008. P.R. China.

e-mail: fenglinqingwan@163.com

http://dx.doi.org/10.1016/j.apm.2010.03.012
http://dx.doi.org/10.1016/j.automatica.2008.07.016
http://dx.doi.org/10.14736/kyb-2014-4-0632
http://dx.doi.org/10.14736/kyb-2014-4-0632
http://dx.doi.org/10.1103/physrevlett.96.034101

	Introduction
	Problem statement and preliminaries
	Sufficient conditions for finite-time stochasticsynchronization
	Sufficient conditions for the finite-time generalized outer synchronization
	Simulation results
	Conclusions

