Kybernetika 52 no. 1, 89-105, 2016

Output synchronization of multi-agent port-Hamiltonian systems with link dynamics

Bing Wang, Xinghu Wang and Honghua WangDOI: 10.14736/kyb-2016-1-0089


In this paper, the output synchronization control is considered for multi-agent port-Hamil\-to\-nian systems with link dynamics. By using Hamiltonian energy function and Casimir function comprehensively, the design method is proposed to overcome the difficulties taken by link dynamics. The Hamiltonian function is used to handle the dynamic of agent, while the Casimir function is constructed to deal with the dynamic of link. Thus the Lyapunov function is generated by modifying the Hamiltonian function of forced Hamiltonian systems. Then, the proposed approach is applied in multi-machine power systems, which are interconnected in microgrid with power frequencies as link dynamics. Finally, the simulation result demonstrates the effectiveness of the gotten method.


multi-agent system, port-Hamiltonian system, Casimir function, link dynamics, multi-machine power system


93C02, 94C15


  1. M. Arcak: Passivity as a design tool for group coordination. IEEE Trans. Automat. Control 52 (2007), 1380-1390.   DOI:10.1109/tac.2007.902733
  2. D. Cheng, Z. Xi, Y. Hong. and H. Qin: Energy-based stabilization of forced Hamiltonian systems and its application to power systems. Control Theory Appl. 17 (2000), 798-802.   CrossRef
  3. N. Chopra and M. W. Spong: Passivity-based control of multi-agent systems. In: Advances in Robot Control: from Everyday Physics to Human-Like Movements (S. Kawamura and M. Svinin, eds.), Springer-Verlag, New York 2006, pp. 107-134.   DOI:10.1007/978-3-540-37347-6_6
  4. C. Godsil and G. Royle: Algebraic Graph Theory. Springer-Verlag, New York 2001.   DOI:10.1007/978-1-4613-0163-9
  5. Y. Hong, L. Gao, D. Cheng and J. Hu: Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Trans. Automat. Control 52 (2007), 943-948.   DOI:10.1109/tac.2007.895860
  6. J. Hu: On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 768-784.   CrossRef
  7. M. Jafarian, E. Vos, C. De Persis, A. J. van der Schaft and J. M. A. Scherpen: Formation control of a multi-agent system subject to Coulomb friction. Automatica 61 (2015), 253-262.   DOI:10.1016/j.automatica.2015.08.021
  8. C. Li and Y. Wang: Protocol design for output consensus of port-controlled Hamiltonian multi-agent systems. Acta Automat. Sinica 40 (2014), 415-422.   DOI:10.1016/s1874-1029(14)60004-5
  9. T. Liu and Z. P. Jiang: Distributed output-feedback control of nonlinear multi-agent systems. IEEE Trans. Automat. Control 58 (2013), 2912-2917.   DOI:10.1109/tac.2013.2257616
  10. Q. Lu, Y. Z. Sun, Z. Xu and T. Mochizuki: Decentralized nonlinear optimal excitation control. IEEE Trans. Power Systems 11 (1996), 1957-1962.   DOI:10.1109/59.544670
  11. A. Macchelli and C. Melchiorri: Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Control 50 (2005), 1839-1844.   DOI:10.1109/tac.2005.858656
  12. B. Maschke, R. Ortega and A. J. van der Schaft: Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Control 45 (2000), 1498-1502.   DOI:10.1109/9.871758
  13. R. Olfati-Saber and R. M. Murray: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533.   DOI:10.1109/tac.2004.834113
  14. R. Ortega, A. J. van der Schaft, B. Maschke and G. Escobar: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38 (2002), 585-596.   DOI:10.1016/s0005-1098(01)00278-3
  15. W. Ren: On consensus algorithms for double-integrator dynamics. IEEE Trans. Automat. Control 53 (2008), 1503-1509.   DOI:10.1109/tac.2008.924961
  16. S. Sakai: An impedance control for simplified hydraulic model with Casimir functions. In: Proc. SICE Annual Conference, Taipei 2010.   CrossRef
  17. G. Shi, K. H. Johansson and Y. Hong: Reaching an optimal consensus: dynamical systems that compute intersections of convex sets. IEEE Trans. Automat. Control 58 (2013), 610-622.   DOI:10.1109/tac.2012.2215261
  18. Y. Z. Sun, X. Li and Y. H. Song: A new Lyapunov function for transient stability analysis of controlled power systems. Power Engrg. Soc. Winter Meeting 2 (2000), 1325-1330.   CrossRef
  19. A. J. van der Schaft: $L_{2}$-Gain and Passivity Techniques in Nonlinear Control. Springer-Verlag, London 2000.   DOI:10.1007/978-1-4471-0507-7
  20. A. J. van der Schaft and B. M. Maschke: Port-Hamiltonian systems on graphs. SIAM J. Control Optim. 51 (2013), 906-937.   DOI:10.1137/110840091
  21. X. Wang, D. Xu and Y. Hong: Consensus control of nonlinear leader-follower multi-agent systems with actuating disturbances. Systems Control Lett 73 (2014), 58-66.   DOI:10.1016/j.sysconle.2014.09.004
  22. Y. Wang, D. Cheng, C. Li and Y. Ge: Dissipative Hamiltonian realization and energy-based $L_{2}$-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat- Control 48 (2003), 1428-1433.   DOI:10.1109/tac.2003.815037
  23. Y. Wang and S. Ge: Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems. IEEE Trans. Control Systems Technol. 16 (2008), 202-213.   DOI:10.1109/tcst.2007.903367
  24. Z. Xi, D. Cheng, Q. Lu. and S. Mei: Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 38 (2002), 527-534.   DOI:10.1016/s0005-1098(01)00233-3