Kybernetika 52 no. 1, 15-27, 2016

Incomparability with respect to the triangular order

Emel Aşıcı and Funda KaraçalDOI: 10.14736/kyb-2016-1-0015


In this paper, we define the set of incomparable elements with respect to the triangular order for any t-norm on a bounded lattice. By means of the triangular order, an equivalence relation on the class of t-norms on a bounded lattice is defined and this equivalence is deeply investigated. Finally, we discuss some properties of this equivalence.


triangular norm, bounded lattice, $T$-partial order


03E72, 03B52


  1. E. Aşıcı and F. Karaçal: On the T-partial order and properties. Inf. Sci. 267 (2014), 323-333.   DOI:10.1016/j.ins.2014.01.032
  2. G. Birkhoff: Lattice Theory. Third edition. Providence 1967.   CrossRef
  3. B. De Baets and R. Mesiar: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75.   DOI:10.1016/s0165-0114(98)00259-0
  4. B. De Baets and R. Mesiar: Triangular norms on the real unit square. In: Proc. 1999 EUSFLAT-ESTYLF Joint Conference, Palma de Mallorca 1999, pp. 351-354.   CrossRef
  5. J. Casasnovas and G. Mayor: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159 (2008), 1165-1177.   DOI:10.1016/j.fss.2007.12.005
  6. S. Gottwald: A Treatise on Many-valued Logic. Studies in Logic and Computation, Research Studies Press, Baldock 2001.   CrossRef
  7. F. Karaçal and E. Aşıcı: Some notes on T-partial order. J. Inequal. Appl. 2013 (2013), 219.   DOI:10.1186/1029-242x-2013-219
  8. F. Karaçal and M. N. Kesicioğlu: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.   CrossRef
  9. F. Karaçal and Y. Sağıroğlu: Infinetely $\bigvee$- distributive t-norm on complete lattices and pseudo-complements. Fuzzy Sets Syst. 160 (2009), 32-43.   CrossRef
  10. F. Karaçal and Dj. Khadjiev: $\bigvee$-distributive and infinitely $\bigvee$-distributive t-norms on complete lattice. Fuzzy Sets Syst. 151 (2005), 341-352.   DOI:10.1016/j.fss.2008.03.022
  11. F. Karaçal: On the direct decomposability of strong negations and S-implication operators on product lattices. Inf. Sci. 176 (2006), 3011-3025.   DOI:10.1016/j.ins.2005.12.010
  12. M. N. Kesicioğlu, F. Karaçal and R. Mesiar: Order-equivalent triangular norms. Fuzzy Sets Syst. 268 (2015), 59-71.   CrossRef
  13. D. Khadjiev and F. Karaçal: Pairwise comaximal elements and the classification of all $\vee$-distributive triangular norms of length 3. Inf. Sci. 204 (2012), 36-43.   DOI:10.1016/j.ins.2012.03.014
  14. E. P. Klement, R. Mesiar, E. Pap and : Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   DOI:10.1007/978-94-015-9540-7
  15. X. Liang and W. Pedrycz: Logic-based fuzzy networks: A study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160 (2009), 3475-3502.   DOI:10.1016/j.fss.2009.04.014
  16. K. C. Maes and A. Mesiarova-Zemankova: Cancellativity properties for t-norms and t-subnorms. Inf. Sci. 179 (2009), 135-150.   DOI:10.1016/j.ins.2008.11.035
  17. J. Martin, G. Mayor and J. Torrens: On locally internal monotonic operations. Fuzzy Sets Syst. 137 (2003), 27-42.   DOI:10.1016/s0165-0114(02)00430-x
  18. H. Mitsch: A natural partial order for semigroups. Proc. Am. Math. Soc. 97 (1986), 384-388.   DOI:10.1090/s0002-9939-1986-0840614-0
  19. S. Saminger: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1413.   DOI:10.1016/j.fss.2005.12.021
  20. B. Schweizer and A. Sklar: Probabilistic Metric Spaces. Elsevier, Amsterdam 1983.   CrossRef
  21. B. Schweizer and A. Sklar: Espaces m$\acute{e}$triques al$\acute{e}$atoires. C. R. Acad. Sci. Paris S$\acute{e}$r. A 247 (1958), 2092-2094.   CrossRef
  22. B. Schweizer and A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334.   DOI:10.2140/pjm.1960.10.313
  23. B. Schweizer and A. Sklar: Associative functions and abstract semigroups. Publ. Math. Debrecen 10 (1963), 69-81.   CrossRef