Kybernetika 51 no. 5, 765-783, 2015

Generalized versions of MV-algebraic central limit theorems

Piotr Nowak and Olgierd HryniewiczDOI: 10.14736/kyb-2015-5-0765

Abstract:

MV-algebras can be treated as non-commutative generalizations of boolean algebras. The probability theory of MV-algebras was developed as a generalization of the boolean algebraic probability theory. For both theories the notions of state and observable were introduced by abstracting the properties of the Kolmogorov's probability measure and the classical random variable. Similarly, as in the case of the classical Kolmogorov's probability, the notion of independence is considered. In the framework of the MV-algebraic probability theory many important theorems (as the individual ergodic theorem and the laws of large numbers for observables) were proved. In particular, the central limit theorem (CLT) for sequences of independent and identically distributed observables was considered. In this paper, for triangular arrays of independent, not necessarily identically distributed observables of MV-algebras, we have proved the Lindeberg and the Lyapunov central limit theorems, and the Feller theorem. To show that the generalization proposed by us is essential, we discuss examples of applications of the proved MV-algebraic versions of theorems.

Keywords:

MV-algebra, central limit theorem, MV-algebraic probability

Classification:

06D35, 60B15

References:

  1. K. B. Athreya and S. N. Lahiri: Measure Theory and Probability Theory. Springer-Verlag, Heidelberg 2006.   DOI:10.1007/978-0-387-35434-7
  2. P. Billingsley: Probability and Measure. Second edition. Wiley Press, New York 1986.   CrossRef
  3. G. Birkhoff and J. Von Neumann: The logic of quantum mechanics. Ann. Math. 37 (1936), 823-843.   DOI:10.2307/1968621
  4. C. Carathéodory: Mass und Integral und ihre Algebraisierung. Birkäuser, Boston 1956.   DOI:10.1007/978-3-0348-6948-5
  5. C. C. Chang: Algebraic Analysis of Many Valued Logics. Trans. Amer. Math. Soc. 88 (1958), 2, 467-490.   DOI:10.2307/1993227
  6. F. Chovanec: States and observables on MV algebras. Tatra Mountains Mathematical Publications 3 (1993), 55-65.   CrossRef
  7. R. Cignoli, I. D'Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht 2000.   DOI:10.1007/978-94-015-9480-6
  8. A. Dvurečenskij and F. Chovanec: Fuzzy quantum spaces and compatibility. Int. J. Theoret. Physics 27 (1988), 1069-1082.   DOI:10.1007/bf00674352
  9. S. Gudder: Stochastic Methods of Quantum Mechanics. Elsevier, North-Holland 1979.   CrossRef
  10. J. Łukasiewicz and A. Tarski: Un\-ter\-such\-un\-gen {ü}ber den Aus\-sagen\-kalk{ü}l. Com\-ptes Ren\-dus des s{é}\-an\-ces de la So\-ci{é}t{é} des Scien\-ces et des Let\-tres de Var\-so\-vie, Classe III 23 (1930), 30-50.   CrossRef
  11. R. Mesiar: Fuzzy observables. J. Math. Anal. Appl. 174 (1993), 178-193.   DOI:10.1006/jmaa.1993.1109
  12. R. Mesiar: Fuzzy sets, difference posets and MV-algebras. In: Fuzzy Logic and Soft Computing (B. Bouchon-Meunier, R. R. Yager and L. A. Zadeh, eds.), World Scientific, Singapore 1995, pp. 345-352.   CrossRef
  13. D. Mundici: Interpretation of AFC*-algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63.   CrossRef
  14. D. Mundici: Logic of infinite quantum systems. Int. J. Theor. Physics 32 (1993), 1941-1955.   CrossRef
  15. D. Mundici: Advanced Lukasiewicz Calculus and MV-algebras. Springer, New York 2011.   CrossRef
  16. P. Nowak and J. Gadomski: Deterministic properties of serially connected distributed lag models. Oper. Res. Decis. 23 (2013), 3, 43-55.   CrossRef
  17. K. Piasecki: On the Bayes formula for fuzzy probability measures. Fuzzy Sets and Systems 18 (1986), 2, 183-185.   DOI:10.1016/0165-0114(86)90020-5
  18. P. Pták and S. Pulmannová: Kvantové logiky (in Slovak). Veda, Bratislava 1989.   CrossRef
  19. S. Pulmannová: A note on observables on MV-algebras. Soft Computing 4 (2000), 45-48.   DOI:10.1007/s005000050081
  20. J. Pykacz: Quantum logics as families of fuzzy subsets of the set of physical states. In: Preprints of the Second IFSA Congress, Tokyo 1987, pp. 437-440.   CrossRef
  21. J. Pykacz: Fuzzy set description of physical systems and their dynamics. Busefal 38 (1989), 102-107.   CrossRef
  22. B. Riečan: A new approach to some notions of statistical quantum mechanics. Busefal 35 (1988), 4-6.   CrossRef
  23. B. Riečan: Fuzzy connectives and quantum models. In: Cybernetics and Systems Research (R. Trappl, ed.), World Scientific, Singapore 1992, pp. 335-338.   CrossRef
  24. B. Riečan: On limit theorems in fuzzy quantum spaces. Fuzzy Sets and Systems 101 (199), 79-86.   DOI:10.1016/s0165-0114(97)00051-1
  25. B. Riečan: On the conditional expectation of observables in MV algebras of fuzzy sets. Fuzzy Sets and Systems 102 (1999), 445-450.   DOI:10.1016/s0165-0114(98)00218-8
  26. B. Riečan: Probability theory on IF events. In: Trends and Progress in System Identification, Papers in Honor of Daniele Mundici on the Occasion of His 60th birthday, Lect. Notes in Computer Sci. 4460 (S. Aguzzoli et al., eds.), Springer, Berlin 2007, pp. 290-308.   DOI:10.1007/978-3-540-75939-3_17
  27. B. Riečan: On the probability theory on MV-algebras. Soft Computing 4 (2000), 49-57.   DOI:10.1007/s005000050082
  28. V. Riečan and D. Mundici: Probability on MV-algebras. In: Handbook of Measure Theory (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 869-909.   DOI:10.1016/b978-044450263-6/50022-1
  29. B. Riečan and T. Neubrunn: Integral, Measure and Ordering. Kluwer Academic Publishers, Bratislava 1997.   DOI:10.1007/978-94-015-8919-2
  30. A. Rose and J. B. Rosser: Fragments of many valued statement calculi. Trans. Amer. Math. Soc. 87 (1958), 1-53.   DOI:10.2307/1993083
  31. V. C. Varadarajan: Geometry of Quantum Mechanics. van Nostrand, Princeton 1968.   DOI:10.1007/978-0-387-49386-2