Kybernetika 51 no. 5, 747-764, 2015

Poset-valued preference relations

Vladimír Janiš, Susana Montes, Branimir Šešelja and Andreja TepavčevićDOI: 10.14736/kyb-2015-5-0747

Abstract:

In decision processes some objects may not be comparable with respect to a preference relation, especially if several criteria are considered. To provide a model for such cases a poset valued preference relation is introduced as a fuzzy relation on a set of alternatives with membership values in a partially ordered set. We analyze its properties and prove the representation theorem in terms of particular order reversing involution on the co-domain poset. We prove that for every set of alternatives there is a poset valued preference whose cut relations are all relations on this domain. We also deal with particular transitivity of such preferences.

Keywords:

transitivity, relation, poset, order reversing involutions, weakly orthogonal poset

Classification:

03G10, 91B08

References:

  1. J. Bezdek, B. Spillman and R. Spillman: A fuzzy relation space for group decision theory. Fuzzy Sets Systems 1 (1978), 255-268.   DOI:10.1016/0165-0114(78)90017-9
  2. G. Birkhoff: Lattice Theory. (Third edition. AMS Colloquium Publications, Vol. XXV, 1967.   CrossRef
  3. I. Chajda: An algebraic axiomatization of orthogonal posets. Soft Computing 18 (2013), 1, 1-4).   DOI:10.1007/s00500-013-1047-1
  4. R. Cignoli and F. Esteva: Commutative, integral bounded residuated lattices with an added involution. Annals of Pure and Applied Logic 161 (2009), 2, 150-160.   DOI:10.1016/j.apal.2009.05.008
  5. M. Dasgupta and R. Deb: Fuzzy choice functions. Soc. Choice Welfare 8 (1991), 2, 171-182.   DOI:10.1007/bf00187373
  6. H. David: The Method of Paired Comparisons. Griffin's Statistical Monographs and Courses, Vol. 12, Charles Griffin and D. Ltd., 1963.   CrossRef
  7. B. De Baets and H. De Meyer: Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity. Fuzzy Sets and Systems 152 (2005), 2, 249-270.   CrossRef
  8. B. De Baets, H. De Meyer and B. De Schuymer: Cyclic Evaluation of Transitivity of Reciprocal Relations. Social Choice and Welfare 26 (2006), 217-238.   DOI:10.1016/j.fss.2004.11.002
  9. J.-P. Doignon, B. Monjardet, M. Roubens and Ph.\ Vincke: Biorder families, valued relations, and preference modelling. J. Math. Psych. 30 (1986), 435-480.   DOI:10.1016/0022-2496(86)90020-9
  10. B. Dutta and J.F. Laslier: Comparison functions and choice correspondences. Soc. Choice Welfare 16 (1999), 513-532.   DOI:10.1007/s003550050158
  11. Z.-P. Fan and X. Chen X: Consensus measures and adjusting inconsistency of linguistic preference relations in group decision making. Lecture Notes in Artificial Intelligence, Springer-Verlag 3613 (2005), 130-139.   DOI:10.1007/11539506_16
  12. Z.-P. Fan and Y. P. Jiang: A judgment method for the satisfying consistency of linguistic judgment matrix. Control and Decision 19 (2004), 903-906.   CrossRef
  13. P. C. Fishburn: Binary choice probabilities: on the varieties of stochastic transitivity. J. Math. Psychology 10 (1973), 327-352.   DOI:10.1016/0022-2496(73)90021-7
  14. J. Flachsmeyer: Note on orthocomplemented posets II. In: Proc. 10th Winter School on Abstract Analysis (Z. Frolík, ed.), Circolo Matematico di Palermo, Palermo 1982. pp. 67-74.   CrossRef
  15. J. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers 1994.   DOI:10.1007/978-94-017-1648-2
  16. J. García-Lapresta and B. Llamazares: Aggregation of fuzzy preferences: some rules of the mean. Soc. Choice Welfare 17 (2000), 673-690.   DOI:10.1007/s003550000048
  17. J. García-Lapresta and B. Llamazares: Majority decisions based on difference of votes. J.\ Math. Economics 35 (2001), 463-481.   DOI:10.1016/s0304-4068(01)00055-6
  18. J. A. Goguen: $L$-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174.   DOI:10.1016/0022-247x(67)90189-8
  19. F. Herrera: A sequential selection process in group decision making with linguistic assessment. Inform. Sci. 85 (1995), 223-239.   DOI:10.1016/0020-0255(95)00025-k
  20. F. Herrera and E. Herrera-Viedma: Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets and Systems 115 (2000), 67-82.   DOI:10.1016/s0165-0114(99)00024-x
  21. F. Herrera and L. Martínez: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems 8 (2000), 746-752.   DOI:10.1109/91.890332
  22. F. Herrera, E. Herrera-Viedma and L. Mart{í}nez: A fusion approach for managing multi-granularity linguistic terms sets in decision making. Fuzzy Sets and Systems 114 (2000), 43-58.   DOI:10.1016/s0165-0114(98)00093-1
  23. F. Herrera, E. Herrera-Viedma and J. L. Verdegay: A Model of Consensus in group decision making under linguistic assessments. Fuzzy Sets and Systems 78 (1996), 73-87.   DOI:10.1016/0165-0114(95)00107-7
  24. F. Herrera, E. Herrera-Viedma and J. L. Verdegay: Direct approach processes in group decision making using linguistic OWA operators. Fuzzy Sets and Systems 79 (1996), 175-190.   DOI:10.1016/0165-0114(95)00162-x
  25. E. Herrera-Viedma, F. Herrera and F. Chiclana: A consensus model for multiperson decision making with different preference structures. IEEE Trans. Systems, Man and Cybernetics 32 (2002), 394-402.   DOI:10.1109/tsmca.2002.802821
  26. J. Kacprzyk, M. Fedrizzi and H. Nurmi: Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems 49 (1992), 21-31.   DOI:10.1016/0165-0114(92)90107-f
  27. J. Kacprzyk, H. Nurmi and M. Fedrizzi (eds.): Consensus under Fuzziness. Kluwer Academic Publishers, Boston 1996.   CrossRef
  28. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Boston - London - Dordrecht 2000.   DOI:10.1007/978-94-015-9540-7
  29. S. Lahiri: Axiomatic characterizations of threshold choice functions for comparison functions. Fuzzy Sets and Systems 132 (2002), 77-82.   DOI:10.1016/s0165-0114(01)00240-8
  30. K. Menger: Probabilistic theories of relations. Proc. Nat. Acad. Sci. (Math.) 37 (1951), 178-180.   DOI:10.1073/pnas.37.3.178
  31. B. Monjardet: A generalisation of probabilistic consistency: linearity conditions for valued preference relations. In: Non-conventional Preference Relations in Decision Making (J. Kacprzyk and M. Roubens, eds.), Lecture Notes in Economics and Mathematical Systems, Vol. 301, Springer-Verlag, 1988.   DOI:10.1007/978-3-642-51711-2_3
  32. H. Nurmi: Approaches to collective decision making with fuzzy preference relations. Fuzzy Sets Systems 6 (1981), 249-259.   DOI:10.1016/0165-0114(81)90003-8
  33. H. Nurmi: Comparing Voting Systems. Reidel, Dordrecht 1987.   DOI:10.1007/978-94-009-3985-1
  34. S. Ovchinnikov: Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets and Systems 40 (1991), 1, 107-126.   DOI:10.1016/0165-0114(91)90048-u
  35. P. Pták and P. Pulmannová: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht 1991.   CrossRef
  36. F. Roberts: Homogeneous families of semiorders and the theory of probabilistic consistency. J. Math. Psych. 8 (1971), 248-263.   DOI:10.1016/0022-2496(71)90016-2
  37. M. Roubens and Ph. Vincke: Preference Modelling. Springer-Verlag, Berlin 1985.   DOI:10.1007/978-3-642-46550-5
  38. B. Šešelja and A. Tepavčević: On a construction of codes by $P$-fuzzy sets. Review of Research, Fac. of Sci., Univ. of Novi Sad, Math. Ser. 20 2 (1990), 71-80.   CrossRef
  39. B. Šešelja and A. Tepavčević: Partially ordered and relational valued fuzzy relations I. Fuzzy Sets and Systems 72 (1995), 2, 205-213.   DOI:10.1016/0165-0114(94)00352-8
  40. B. Šešelja and A. Tepavčević: Completion of ordered structures by cuts of fuzzy sets. An overview. Fuzzy Sets and Systems 136 (2003), 1-19.   DOI:10.1016/s0165-0114(02)00365-2
  41. B. Šeselja and A. Tepavčević: Representing ordered structures by fuzzy sets. An overview. Fuzzy Sets and Systems 136 (2003), 21-39.   DOI:10.1016/s0165-0114(02)00366-4
  42. Z. Switalski: Rationality of fuzzy reciprocal preference relations. Fuzzy Sets and Systems 107 (1999), 187-190.   DOI:10.1016/s0165-0114(97)00313-8
  43. R. R. Yager: An approach to ordinal decision making. Int. J. Approx. Reasoning 12 (1995), 237-261.   DOI:10.1016/0888-613x(94)00035-2
  44. L. A. Zadeh: Fuzzy sets. Information and Control 8 (1965), 338-353.   DOI:10.1016/s0019-9958(65)90241-x