Kybernetika 51 no. 4, 712-723, 2015

Fuzzy orness measure and new orness axioms

LeSheng Jin, Martin Kalina and Gang QianDOI: 10.14736/kyb-2015-4-0712


We have modified the axiomatic system of orness measures, originally introduced by Kishor in 2014, keeping altogether four axioms. By proposing a fuzzy orness measure based on the inner product of lattice operations, we compare our orness measure with Yager's one which is based on the inner product of arithmetic operations. We prove that fuzzy orness measure satisfies the newly proposed four axioms and propose a method to determine OWA operator with given fuzzy orness degree.


aggregation function, OWA operator, orness measure


03E72, 28E10


  1. G. Choquet: Theory of capacities. Ann. Inst. Fourier 5 (1953), 131-295.   DOI:10.5802/aif.53
  2. J. J. Dujmović: LSP method and its use for evaluation of Java IDEs. Int. J. Approx. Reasoning 41 (2006), 3-22.   DOI:10.1016/j.ijar.2005.06.006
  3. J. J. Dujmović: Continuous preference logic for system evaluation. IEEE Trans. Fuzzy Syst. 15 (2007), 6, 1082-1099.   DOI:10.1109/tfuzz.2007.902041
  4. J. J. Dujmović: Andness and orness as a mean of overall importance. In: IEEE International Conference on Fuzzy Systems, FUZZ 2012, Brisbane 2012, pp. 1-6.   DOI:10.1109/fuzz-ieee.2012.6250777
  5. D. Filev and R. R. Yager: On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems 94 (1998), 157-169.   DOI:10.1016/s0165-0114(96)00254-0
  6. M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press, Cambridge 2009.   DOI:10.1017/cbo9781139644150
  7. G. Hesamian and S. M. Taheri: Fuzzy empirical distribution function: Properties and application. Kybernetika, 49 (2013), 6, 962-982.   CrossRef
  8. L. Jin: Some properties and representation methods for Ordered Weighted Averaging operators. Fuzzy Sets and Systems 261 (2015), 60-86.   DOI:10.1016/j.fss.2014.04.019
  9. A. Kishor, A. K. Singh and N. R. Pal: Orness measure of OWA operators: a new approach. IEEE Trans. Fuzzy Syst. 22 (2014), 4, 1039-1045.   DOI:10.1109/tfuzz.2013.2282299
  10. A. Kolesárová, R. Mesiar and T. Rückschlossová: Power stable aggregation functions. Fuzzy Sets and Systems 240 (2014), 39-50.   DOI:10.1016/j.fss.2013.05.005
  11. X. W. Liu: On the properties of equidifferent OWA operator. Int. J. Approx. Reasoning 43 (2006), 90-107.   DOI:10.1016/j.ijar.2005.11.003
  12. X. W. Liu: An orness measure for quasi-arithmetic means. IEEE Trans. Fuzzy Syst. 16 (2006), 6, 837-848.   DOI:10.1109/tfuzz.2006.879990
  13. X. W. Liu: Models to determine parameterized ordered weighted averaging operators using optimization criteria. Inf. Sci. 190 (2012), 27-55.   DOI:10.1016/j.ins.2011.12.007
  14. X. W. Liu and L. H. Chen: On the properties of parametric geometric OWA operator. Int. J. Approx. Reasoning 35 (2004), 163-178.   DOI:10.1016/j.ijar.2003.09.001
  15. X. W. Liu and S. L. Han: Orness and parameterized RIM quantifier aggregation with OWA operators: A summary. Int. J. Approx. Reasoning 48 (2008), 77-97.   DOI:10.1016/j.ijar.2007.05.006
  16. M. Mareš and R. Mesiar: Information in vague data sources. Kybernetika 49 (2013), 3, 433-445.   CrossRef
  17. R. Mesiar, J. Li and E. Pap: Discrete pseudo-integrals. Int. J. Approx. Reasoning 54 (2013), 357-364.   DOI:10.1016/j.ijar.2012.07.008
  18. R. Mesiar, J. Li and E. Pap: Superdecomposition integrals. Fuzzy Sets Syst. 259 (2015), 3-11.   DOI:10.1016/j.fss.2014.05.003
  19. R. Mesiar and A. Stupňanová: Decomposition integrals. Int. J. Approx. Reason. 54 (2013), 1252-1259.   DOI:10.1016/j.ijar.2013.02.001
  20. M. Sugeno: Theory of Fuzzy Integrals and its Applications. PhD. Thesis. Tokyo Institute of Technology 1974.   CrossRef
  21. V. Torra: The weighted OWA operator. Int. J. Intell. Syst. 12 (1997), 153-166.   DOI:10.1002/(sici)1098-111x(199702)12:2<153::aid-int3>;2-p
  22. L. Troiano and R. R. Yager: Recursive and iterative OWA operators. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 13 (2005), 6, 579-599.   DOI:10.1142/s0218488505003680
  23. C. Wallmann and G. D. Kleiter: Degradation in probability logic: When more information leads to less precise conclusions. Kybernetika 50 (2014), 2, 268-283.   DOI:10.14736/kyb-2014-2-0268
  24. Z. S. Xu: An overview of methods for determining OWA weights. Int. J. Intell. Syst. 20 (2005), 8, 843-865.   DOI:10.1002/int.20097
  25. R. R. Yager: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18 (1) (1988), 183-190.   DOI:10.1109/21.87068
  26. R. R. Yager: Families of OWA operators. Fuzzy Sets and Systems 59 (1993), 125-143.   DOI:10.1016/0165-0114(93)90194-m
  27. R. R. Yager: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11 (1996), 49-73.   DOI:10.1002/(sici)1098-111x(199601)11:1<49::aid-int3>;2-z
  28. R. R. Yager: Induced aggregation operators. Fuzzy Sets and Systems 137 (2003), 59-69.   DOI:10.1016/s0165-0114(02)00432-3
  29. R. R. Yager: OWA Aggregation Over a Continuous Interval Argument With Applications to Decision Making. IEEE Trans. Syst. Man Cybern. Part B 34 (2004), 1952-1963.   DOI:10.1109/tsmcb.2004.831154
  30. R. R. Yager: Centered OWA operators. Soft Computing 11 (2007), 631-639.   DOI:10.1007/s00500-006-0125-z
  31. R. R. Yager: Time series smoothing and OWA aggregation. IEEE Trans. Fuzzy Syst. 16 (4) (2008), 994-1007.   DOI:10.1109/tfuzz.2008.917299
  32. R. R. Yager: Norms induced from OWA operators. IEEE Trans. Fuzzy Syst. 18 (2010), 1, 57-66.   DOI:10.1109/tfuzz.2009.2035812
  33. R. R. Yager: Probabilistically weighted OWA aggregation. IEEE Trans. Fuzzy Syst. 22 (2014), 46-56.   DOI:10.1109/tfuzz.2013.2245899
  34. R. R. Yager and D. P. Filev: Parameterized and-like and or-like OWA operators. Int. J. Gen. Syst. 22 (1994), 297-316.   DOI:10.1080/03081079408935212
  35. R. R. Yager and D. P. Filev: Operations for granular computing: mixing words and numbers. In: Fuzzy Systems Proceedings IEEE World Congress on Computational Intelligence, Anchorage 1998, pp. 123-128.   DOI:10.1109/fuzzy.1998.687470
  36. R. R. Yager and D. P. Filev: Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybernet. 29 (1999), 141-150.   DOI:10.1109/3477.752789
  37. R. R. Yager, J. Kacprzyk and G. Beliakov: Recent Developments on the Ordered Weighted Averaging Operators: Theory and Practice. Springer-Verlag, Berlin 2011.   DOI:10.1007/978-3-642-17910-5