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FUZZY ORNESS MEASURE AND NEW ORNESS AXIOMS

LeSheng Jin, Martin Kalina and Gang Qian

We have modified the axiomatic system of orness measures, originally introduced by Kishor
in 2014, keeping altogether four axioms. By proposing a fuzzy orness measure based on the
inner product of lattice operations, we compare our orness measure with Yager’s one which
is based on the inner product of arithmetic operations. We prove that fuzzy orness measure
satisfies the newly proposed four axioms and propose a method to determine OWA operator
with given fuzzy orness degree.
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1. INTRODUCTION

Aggregation function (or operator) [1, 6] is essential in a variety of theoretical and ap-
plication areas [7, 10, 16, 17, 18, 19, 23]. Ordered Weighted Averaging (OWA) operators
(proposed by Yager [25]) which generalize the or-like and and-like aggregation functions
with the aggregation result lying between the Min (and) and Max (or) operators, built
a well-known class of aggregation functions. OWA operators proved to be useful in nu-
merous areas [5, 8, 9, 11, 12, 13, 14, 15, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37]. They can be considered as Choquet integrals with respect to symmetric
capacities (see, e. g., [6]).

The corresponding orness measure plays an important role in studies of OWA op-
erators [2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37]. The orness measure reflects the or-like or and-like aggregation
result of an aggregation function. For an OWA operator with the weighting vector
w = (w1, . . . , wn), its orness measure originally introduced by Yager [25] is defined as
ornessY(w) = 1

n−1

∑
(n−i)wi. This standard formula has been mostly used and studied

in applications and theoretical studies since it is actually composed by an inner prod-
uct of two vectors w and s using the most well-known operation pair (+,×) (where
the ith coordinate of s is si = n−i

n−1 ). The first definition of orness was proposed by

Dujmović [2, 3, 4] as the global average of F (x)−min(x)
max(x)−min(x) , where F is an aggregation

function. Also the forms of orness have many variations with their own practical expla-
nation and usage. For example, Liu [13] proposed a general Yager-like orness measure
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ornessL(w, h) =
∑
h
(
n−i
n−1

)
wi. Recently, Kishor et al. proposed four axioms [9] for

defining various orness measures. These show that orness can have different definitions
respectively its analysis and usage. Therefore, developing a possible new form of orness
definition is reasonable and suitable both in applications and theoretical studies.

This paper proposes an orness measure based on a similar inner product as it is the
case by Yager, but use lattice operation pair (∨,∧). It also proposes a new axiomatic
system for orness measures consisting again of four axioms (loosing a little the fourth
axiom by Kishor a strengthening the other three axioms). We show that there are many
common properties of orness measures proposed by Yager and the newly introduced in
this paper. And we show that these two orness measures based on (+,×) and (∨,∧),
respectively, can (in some situations) supplement each other in order to obtain more
reliable orness grades for decision makers.

The rest of this paper is organized as follows. Section 2 provides the preliminaries
regarding OWA operators. Section 3 proposes a definition and analyzes the properties
of fuzzy orness; also we propose a new axiomatic system of orness measures and prove
that fuzzy orness satisfies all newly proposed four axioms. Section 4 discusses a method
to determine OWA operator with given fuzzy orness grade. In section 5 we summarize
the main results and make conclusions.

2. PRELIMINARIES

We start recalling known notions and facts with the definition of an OWA operator.

Definition 2.1. (Yager [25], Yager and Filev [34]) Let a = (a1, a2, . . . , an) be an
unordered n-tuple to be aggregated. An OWA operator of dimension n is a mapping F :
[0, 1]n → [0, 1] which has an associated weighting n-tuple w = (w1, w2, . . . , wn) ∈ [0, 1]n

satisfying
n∑
i=1

wi = 1, such that

F (a1, a2, . . . , an) =
n∑
j=1

wjbj , (1)

where bj is the jth largest value of (a1, a2, . . . , an).

Using vector form, (1) can be rewritten into F (a1, a2, . . . , an) = wbT , where b =
(b1, b2, . . . , bn) = (aσ(1), aσ(2), . . . , aσ(n)) is the ordered (decreasing) form of inputs, i. e.,

b1 ≥ b2 ≥ · · · ≥ bn
(
or aσ(1) ≥ aσ(2) ≥ · · · ≥ aσ(n)

)
,

σ is a permutation on {1, 2, . . . , n}.
Remark 2.2. Because of formula (1) we can identify an OWA operator with its weight-
ing n-tuple. For this reason in the rest of the paper we will often write just briefly ‘an
OWA operator w’.

Definition 2.3. (Yager [25]) The measure of orness associated with an OWA operator
w of dimension n is defined as

ornessY (w) =
n∑
i=1

n− i
n− 1

wi. (2)
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The measure of andness associated with the OWA operator w is the complement of its
orness, meaning

andnessY (w) = 1− ornessY (w) =
n∑
i=1

i− 1
n− 1

wi.

The orness measure has the following properties (see [26]).

Proposition 2.4. (Yager [26]) Denote w∗ = (1, 0, . . . , 0), w∗ = (0, 0, . . . , 1) and wA =
( 1
n ,

1
n , . . . ,

1
n ) (w∗, w∗ and wA correspond respectively to the max, min and average

operators). Then ornessY (w∗) = 1, ornessY (w∗) = 0, ornessY (wA) = 1
2 .

Proposition 2.5. (Yager [26]) Let us have OWA operators w = (w1, w2, . . . , wn) and
w′ = (wn, wn−1, . . . , w1). Assume that ornessY (w) = α. Then ornessY (w′) = 1− α.

Now, we recall that OWA operators are nothing else but Choquet integrals with
respect to symmetric capacities (see, e. g., [6]). Actually, Choquet integrals have more
general and complex forms than the OWA operators.

We denote by N = {1, 2, . . . , n} the index set of arguments to be aggregated, and by
|A| the cardinality of A.

Definition 2.6. (Choquet [1], Grabisch et al. [6]) A capacity on 2N is a function
µ : 2N → [0, 1] satisfying

(a) µ(∅) = 0, µ(N) = 1,

(b) A ⊂ B implies µ(A) ≤ µ(B).

A capacity is often called also fuzzy measure (see [20]).

Definition 2.7. (Grabisch et al. [6]) A capacity µ : 2N → [0, 1] is called symmetric if
for A,B ∈ 2N such that |A| = |B| we have µ(A) = µ(B).

Definition 2.8. (Choquet [1]) Let µ : 2N → [0, 1] be a capacity and f : N → [0,∞).
The Choquet integral of f with respect to µ is defined by

(C)
∫
f dµ =

∫ ∞
0

µ({ω ∈ N ; f(ω) > α})dα.

Since we deal only with a discrete measurable space (of a fixed dimension n), the
Choquet integral with respect to µ can be equivalently expressed in the following way.

Proposition 2.9. (Grabisch et al. [6]) Let µ : 2N → [0, 1] be a capacity and x ∈
[0,∞)n. The Choquet integral of x with respect to µ can be expressed as follows:

Cµ(x) =
n∑
i=1

(xσ(i) − xσ(i−1))µ(Aσ(i)), (3)

where σ is a permutation on N such that xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n), and we set
xσ(0) = 0 and Aσ(i) = {ω ∈ N ;ω ≥ σ(i)}.
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The following proposition shows the exact relationship between OWA operators and
Choquet integrals.

Proposition 2.10. (Grabisch et al. [6]) Let µ : 2N → [0, 1] be a capacity and Fw be
an OWA operator given by a weighting n-tuple w = (w1, w2, . . . , wn). Then Cµ = Fw

if and only if µ is symmetric and wi = µ(Ai) − µ(Ai−1) where Ai ⊂ N and |Ai| = i,
A0 = ∅.

As a direct corollary to Proposition 2.10 we have the following properties of OWA
operators which were originally proven by Yager [25].

Proposition 2.11. (Yager [25]) Let Fw be an OWA operator given by a weighting
n-tuple w = (w1, w2, . . . , wn). Assume that s = (s1, s2 . . . , sn) is an arbitrary n-tuple of
inputs.

1. (monotonicity) Let q = (q1, q2, . . . , qn) be any n-tuple of inputs such that si ≤ qi
for all i ∈ N . Then Fw(s) ≤ Fw(q).

2. (idempotency) Assume s1 = s2 = · · · = sn = s. Then Fw(s) = s.

3. (symmetry) Let σ be any permutation on N and sσ = (sσ(1), sσ(2), . . . , sσ(n)).
Then Fw(s) = Fw(sσ).

4. (boundary property) Set w∗ = (1, 0, . . . , 0), w∗ = (0, 0, . . . , 1). Then Fw∗(s) ≤
Fw(s) ≤ Fw∗(s).

3. FUZZY ORNESS DEFINITION AND PROPERTIES

Recently Kishor et al. [9] proposed an axiomatic definition of orness measures intro-
ducing four axioms. First, let us adopt the following notation for the set of all possible
weighting n-tuples:

W =

{
(w1, w2, . . . , wn) ∈ [0, 1]n;

n∑
i=1

wi = 1

}
. (4)

Definition 3.1. (Kishor et al. [9]) Let w ∈ W be an OWA operator. An orness
function, denoted as Aorness, is a function Aorness :W → [0, 1] satisfying the following
properties.

(A1) Aorness(w∗) = 1, where w∗ = (1, 0, . . . , 0).

(A2) Aorness(w∗) = 0, where w∗ = (0, 0, . . . , 1).

(A3) Aorness(wA) = 1
2 , where wA = ( 1

n ,
1
n , . . . ,

1
n ).

(A4) Let w = (w1, w2, . . . , wn) wε = (w1, . . . , wj − ε, . . . , wk + ε, . . . , wn), for ε > 0 and
j < k, be weighting n-tuples. Then Aorness(w) > Aorness(wε).

We propose another axiomatic definition of orness measure. The axioms (A1) – (A3)
from Definition 3.1 will be generalized and axiom (A4) will be slightly weakened.
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Definition 3.2. Let w ∈ W be an OWA operator. An orness measure, denoted by
Aorness, is a function Aorness :W → [0, 1] satisfying the following properties.

(A1’) Let w = (w1, w2, . . . , wn) and w′ = (wn, wn−1, . . . , w1).
Then Aorness(w) +A orness(w′) = 1.

(A2’) Let wH = (α, 0, . . . , 0, 1− α) for α ∈ [0, 1]. Then Aorness(wH) = α.

(A3’) Let wi = (w1, w2, . . . , wn) such that there exists i ∈ N , wi = 1.
Then Aorness(wi) = n−i

n−1 .

(A4’) Let w = (w1, w2, . . . , wn) wε = (w1, . . . , wj − ε, . . . , wk + ε, . . . , wn), for ε > 0 and
j < k, be OWA operators. Then Aorness(w) ≥A orness(wε).

Remark 3.3. (a) The axioms (A1) and (A2) from definition 3.1 are special cases of
newly proposed axioms (A2’) and (A3’). The axiom (A3) is a special case of (A1’) (since
wA = wA

′). And as we have already remarked above, (A4’) is a weakened form of (A4).

(b) The weighting n-tuple wH from axiom (A2’) corresponds to the well-known Hurow-
icz operator.

(c) The weighting n-tuple wi corresponds to the step OWA operator introduced by
Yager [26].

Remark 3.4. Axiom (A1’) shows that the andness measure (corresponding to a given
orness measure) of an OWA operator w is just the orness measure applied to the OWA
operator w′.

Obviously the Yager’s orness measure defined by formula (2) satisfies the axioms
(A1’) – (A4’) from Definition 3.2. We introduce now a new orness measure based on
lattice operations (∨,∧). We show that also this orness measure satisfies the axioms
(A1’) – (A4’).

Definition 3.5. (Fuzzy orness measure) For an OWA operator w ∈ W of dimension n,
its fuzzy orness measure is defined by

ornessf (w) =
n∨
i=1

 n− i
n− 1

∧
i∑

j=1

wi

 . (5)

If we denote
i∑

j=1

wi = si then we can rewrite the fuzzy orness measure into the following

form

ornessf (w) =
n∨
i=1

(
n− i
n− 1

∧ si
)
.
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Remark 3.6. Definition 3.5 is derived from a very instinctive principle. The more
weights are accumulated to the left end of the corresponding OWA operator the more
fuzzy orness it possesses. Therefore this fuzzy orness measure is more suitable for mod-
elling the instinct of human decision-making than for an accurate calculation which
computer is adapted at. Thus, it may have a potential to be applied in artificial intelli-
gence or fuzzy control areas.

Definition 3.7. (Sugeno [20]) Let µ : 2N → [0, 1] be a capacity and f : N → [0, 1].
The Sugeno integral of f with respect to µ is defined by

(S)
∫
f dµ = sup

α∈[0,1]

(α ∧ µ({ω ∈ N ; f(ω) ≥ α})) . (6)

Proposition 3.8. Let w = (w1, w2, . . . , wn) be an OWA operator, g : N → [0, 1] be
defined as g(i) = n−i

n−1 . Further, let µ : 2N → [0, 1] be the additive measure generated
by the weights wi, i. e., µ({i}) = wi. Then

1. (C)
∫
g dµ = ornessY (w),

2. (S)
∫
g dµ = ornessf (w).

Proof of this proposition is skipped since it follows directly by Definitions 2.3, 2.8, 3.5
and 3.7.

Let us give some examples to illustrate the computation of the fuzzy orness measure.

Example 3.9. Calculate the fuzzy orness grades of OWA operators

w1 = (0.9, 0.1, 0, 0, 0), w2 = (0, 0, 0.05, 0.15, 0.8), w3 = (0.4, 0.4, 0.2, 0, 0),
w4 = (0.25, 0.2, 0.1, 0, 0, 0.2, 0.05, 0.15, 0, 0, 0.05).

Solution. We can calculate the corresponding fuzzy orness grades of w1, w2 and w3

from Table 1 where the first row represents the values of the function g(i) = n−i
n−1 and

the second up to fourth rows the measure µk(i) =
i∑

j=1

wk(j) for k = 1, 2, 3, where wk(i)

is the ith coordinate of wk (similarly we can calculate the fuzzy orness grade of w4 from
Table 2). Since the values in the first row are decreasing and in the subsequent rows
increasing, we can simply find the maximum of minima of (g(i), µk(i)) for k = 1, 2, 3
(and similarly also for k = 4 in Table 2).

g(i) 1 3
4

1
2

1
4 0

µ1(i) 0.9 1 1 1 1
µ2(i) 0 0 0.05 0.2 1
µ3(i) 0.4 0.8 1 1 1

Tab. 1. Table corresponding to OWA operators w1, w2 and w3.
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g(i) 1 8
9

7
9

2
3

5
9

4
9

1
3

2
9

1
9 0

µ4(i) 0.25 0.45 0.55 0.55 0.55 0.75 0.8 0.95 0.95 1

Tab. 2. Table corresponding to OWA operator w4.

We get the following values of fuzzy orness grades:
ornessf (w1) = 0.9, ornessf (w2) = 0.2, ornessf (w3) = 0.75, ornessf (w4) = 0.55.

Note that

ornessY (w1) = 0.975, ornessY (w2) = 0.0625, ornessY (w3) = 0.8,
ornessY (w4) = 0.644.

We find that the results of these two orness measures (Yager’s orness and fuzzy orness)
are generally different, but the difference of the results is usually small.

Next, we show that these two orness measures sometimes supplement each other.
And this can help decision makers to judge which OWA operator is more an or-like one.
Also, in some context lattice operations based aggregation may suit better then Yager’s
orness measure (based on arithmetic operations).

Example 3.10. Let w1 = (0.25, 0, 0, 0.75) and w2 = (0.05, 0.15, 0.3, 0.5) be OWA op-
erators. Then for their orness grades we get ornessY (w1) = ornessY (w2) = 0.25. We
cannot distinguish the orness of these two OWA operators.
Let us compute their fuzzy orness grades. Similarly to Example 3.9 we write Table 3

with the function g(i) = 4−i
3 in the first and in the second and third rows the measure

µk(i) =
i∑

j=1

wk(j) for k = 1, 2, where wk(i) is the ith coordinate of wk.

g(i) 1 2
3

1
3 0

µ1(i) 0.25 0.25 0.25 1
µ2(i) 0.05 0.2 0.5 1

Tab. 3. Table corresponding to OWA operators w1 and w2.

For the fuzzy orness grades we have ornessf (w1) = 0.25 and ornessf (w2) = 1
3 .

We can see that the fuzzy orness measure bears some additional information to our
decision which OWA operator is more or-like.

Theorem 3.11. Let f : N → [0, 1] be a strictly decreasing function and m : 2N → [0, 1]
be the additive measure generated by an n-tuple of weights w = (w1, w2, . . . , wn). Let
m̄ : 2N → [0, 1] be the additive measure generated by the system of weights w′ in the
reversed order. Then

(S)
∫
f dm̄ = 1− (S)

∫
f dm.
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P r o o f . First, observe that (S)
∫
f dm̄ = (S)

∫
(1− f) dm. Set (S)

∫
f dm = α. There

are two possibilities.

(1) There exists i ∈ N such that f(i) = α. Then

m({j ∈ N ; j ≤ i}) = m({j ∈ N ; f(j) ≥ α}) ≥ α.

This implies

m({j ∈ N ; j > i}) = m({j ∈ N ; f(j) < α}) = m({j ∈ N ; 1− f(j) < 1− α}) ≤ 1− α.

This together with the fact that f(i) = α implies that (S)
∫

(1− f) dm = 1− α.

(2) There is no i ∈ N such that m({1, 2, . . . , i}) = α and f(i) > α and f(i + 1) < α.
This implies that 1 − f(i + 1) > 1 − α and m({j ∈ N ; j > i}) = 1 − α. Since we have
1− f(i) < 1− α, we get also in this case that (S)

∫
(1− f) dm = 1− α. �

Proposition 3.12. The fuzzy orness measure ornessf : W → [0, 1] satisfies axioms
(A1’) – (A4’) of Definition 3.2.

P r o o f . By Proposition 3.8 and Theorem 3.11 we have that ornessf satisfies (A1’).
Let g : N → [0, 1] and µ : 2N → [0, 1] have the same meaning as in Proposition 3.8.
Then by a simple calculation of the Sugeno integral

(S)
∫
g dµ = ornessf (w)

for an n-tuple of weights w we get that ornessf fulfils axioms (A2’) and (A3’).
Consider weighting n-tuples w = (w1, w2, . . . , w3) and wε = (w1, . . . , wj − ε, . . . , wk +
ε, . . . , wn) as in axiom (A4’). Then we have for every i ∈ N

µ({1, 2, . . . , i}) =
i∑

m=1

wm ≥ µ̄({1, 2, . . . , i}) =
i∑

m=1

wmε ,

where wmε denotes the mth coordinate of wε and µ̄ is the additive measure generated
by the weighting n-tuple wε. This gives

ornessf (w) = (S)
∫
g dµ = max{min{g(i), µ({1, 2, . . . , i})}; i ∈ N}

≥ max{min{g(i), µ̄({1, 2, . . . , i})}; i ∈ N} = (S)
∫
g dµ̄ = ornessf (wε),

and the proof if finished. �

4. ONE METHOD TO DETERMINE OWA OPERATOR WITH GIVEN FUZZY
ORNESS GRADE

As a direct corollary to Proposition 3.8 we have the following.
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Lemma 4.1. For every OWA operator w = (w1, w2, . . . , wn) of dimension n (n ≥ 2)
there exists an integer m ∈ {1, 2, . . . , n− 1} such that

m∑
i=1

wi ≤
n−m
n− 1

and
m+1∑
i=1

wi ≥
n− (m+ 1)

n− 1
.

Proposition 3.8 and Lemma 4.1 have the following corollary.

Corollary 4.2. For every OWA operator w = (w1, w2, . . . , wn) of dimension n (n ≥ 2)
there exists an integer m ∈ {1, 2, . . . , n− 1} such that

ornessf (w) = max

{
n− (m+ 1)

n− 1
,

m∑
i=1

wi

}
. (7)

Remark 4.3. (a) The value m occurring in Lemma 4.1 and Corollary 4.2 is not neces-

sarily given uniquely. This ambiguity ofm occurs if there exists k such that n−k
n−1 =

k∑
i=1

wi.

In this case we can set m = k or m = k− 1. In both cases ornessf (w) can be computed
using formula (7).

(b) We may be looking for an OWA operator w such that ornessf (w) = α. In this case

we can set
m∑
i=1

wi = α, where m = bn − α(n − 1)c due to inequalities from Lemma 4.1

(b·c is the floor function). Using this condition, one can add another constraint, e. g., to
obtain the OWA operator with the maximal entropy or to obtain an equidifferent OWA
operator [11].

Example 4.4. Determine an OWA operator w of dimension n = 10 with given fuzzy
orness grade ornessf (w) = 0.75.

Solution. First we determine m = bn−α(n−1)c = b10−9 ·0.75c = 3. This means that
the weighting 10-tuple we are looking for has to fulfil condition w1 + w2 + w3 = 0.75.
This is the only condition w must fulfil. Hence, we can choose w to be an equidifferent
OWA operator [11]. It means that wk = w1 − (k − 1)d if w1 − (k − 1)d > 0 and wk = 0
otherwise. If we want to have exactly k non-zero weights we get the following system of
constraints.

w1 + w2 + w3 = 0.75 ⇒ w2 = w1 − d = 0.25,
k∑
i=1

wi = 1 ⇒ k · w1 −
1
2
k(k − 1)d = 1,

wk > 0 ⇒ w1 − (k − 1)d > 0,
wk+1 = 0 ⇒ w1 − k · d ≤ 0.

This system of constraints has unique solution, namely k = 6, w1 = 11
36 , d = 1

18 . This
gives the weighting 10-tuple w =

(
11
36 ,

9
36 ,

7
36 ,

5
36 ,

3
36 ,

1
36 , 0, 0, 0, 0

)
.
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5. CONCLUSIONS

Orness and fuzzy orness measures can be represented by Choquet and Sugeno integral,
respectively. By presenting a set of four new orness axioms, we showed that both Yager’s
orness measure as well as the fuzzy orness measure satisfy the newly proposed orness
axioms (A1’) – (A4’). The fuzzy orness measure is useful to supplement Yager’s orness
measure when we face the problem that different OWA operators have the same orness
grade. Fuzzy orness measure is also useful when lattice operations better suite to solving
(or modelling) a problem of ours.

We proposed also a method to determine an OWA operator with given fuzzy orness
grade.
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