Kybernetika 51 no. 3, 420-432, 2015

Choquet-like integrals with respect to level-dependent capacities and φ-ordinal sums of aggregation function

Radko Mesiar and Peter SmrekDOI: 10.14736/kyb-2015-3-0420

Abstract:

In this study we merge the concepts of Choquet-like integrals and the Choquet integral with respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent capacities our approach can be represented as a $\varphi$-ordinal sum of Choquet-like integrals acting on subdomains of the considered scale, and thus it can be regarded as extension method. The approach is illustrated by several examples.

Keywords:

Choquet integral, Choquet-like integral, level-dependent capacity, $\varphi $-ordinal sum of aggregation functions

Classification:

28E05, 28E10

References:

  1. G. Choquet: Theory of capacities. Annales de l'Institite Fourier 5 (1953-1954), 131-295.   DOI:10.5802/aif.53
  2. D. Denneberg: Non-additive Measure and Integral. In: Theory and Decision Library. Series B: Mathematical and Statistical Methods 27. Kluwer Academic Publishers Group, Dordrecht 1994.   DOI:10.1007/978-94-017-2434-0
  3. M. Grabisch, J.-L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press, Cambridge 2009.   DOI:10.1109/sisy.2008.4664901
  4. S. Greco, B. Matarazzo and S. Giove: The Choquet integral with respect to a level dependent capacity. Fuzzy Sets and Systems 175 (2011), 1-35.   DOI:10.1016/j.fss.2011.03.012
  5. R. Mesiar: Choquet-like integrals. J. Math. Anal. Appl. 194 (1995), 477-488.   DOI:10.1006/jmaa.1995.1312
  6. R. Mesiar and B. De Baets: New construction methods for aggregation operators. In: Proc. IPMU'2000, Madrid, pp. 701-706.   CrossRef
  7. E. Pap and ed.: Handbook of Measure Theory. Vol. I, II. North-Holland, Amsterdam 2002.   DOI:10.1016/b978-044450263-6/50000-2
  8. E. Pap: An integral generated by a decomposable measure. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 135-144.   CrossRef
  9. W. Sander and J. Siedekum: Multiplication, distributivity and fuzzy integral, I, II, III. Kybernetika 41 (2005) I: 397-422, II: 469-496, III: 497-518.   CrossRef
  10. D. Schmeidler: Integral representation without additivity. Proc. Amer. Math. Soc. 97 (1986), 255-261.   DOI:10.1090/s0002-9939-1986-0835875-8
  11. D. Schmeidler: Subjective probability and expected utility without additivity. Econometrica 57 (1989), 571-87.   DOI:10.2307/1911053
  12. M. Sugeno: Theory of Fuzzy Integrals and its Applications. PhD Thesis, Tokyo Institute of Technology, 1974.   CrossRef
  13. M. Sugeno and T. Murofushi: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197-222.   DOI:10.1016/0022-247x(87)90354-4
  14. G. Vitali: Sula definizione di integrale delle funzioni di una variabile. Ann. Mat. Pura Appl. 2 (1925), 111-121. English translation: On the definition of integral of functions of one variable. Rivista di Matematica per le Scienze Sociali 20 (1997), 159-168.   CrossRef
  15. Z. Wang and G. J. Klir: Generalized Measure Theory. Springer, 2009.   DOI:10.1007/978-0-387-76852-6